

Future climate and runoff projections in Naltar Catchment, Upper Indus Basin from CORDEX-South Asia models and hydrological modelling

Muhammad Usman Liaqat¹, Ana Casanueva², Giovanna Grossi¹ and Roberto Ranzi¹

¹Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia-DICATAM, Via Branze, 42, 25123 Brescia, Italy.

²Meteorology Group, Department of Applied Mathematics and Computer Sciences, University of Cantabria, 39005 Santander, Spain

EGU General Assembly 2022 Vienna, Austria, 23–27 May 2022

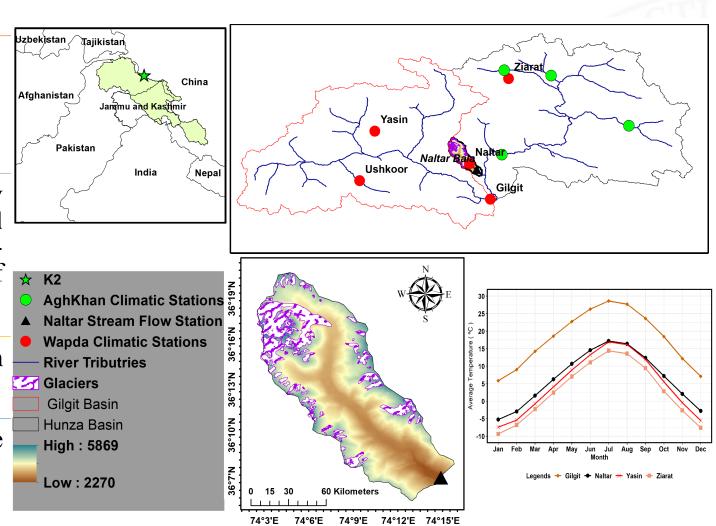
Research Objective

- ✓ Assess if the 'Karakoram anomaly' (e.g. Faronotti et al., Nature Geociences, 2020) i.e. a slower retreat of glaciers in the Karakoram region can be confirmed for the Naltar catchment, in the southern side of the Karakoram (Upper Indus Basin)
- ✓ To examine the overall performance of Physical Based Distributed Snow Land and Ice Model PDSLIM model to compute snow and ice melt contribution to runoff regime and floods.
- ✓ Project changes of the hydrological regime under Climate changes scenarios

Naltar Catchment

The Naltar catchment covers up to 243 km².

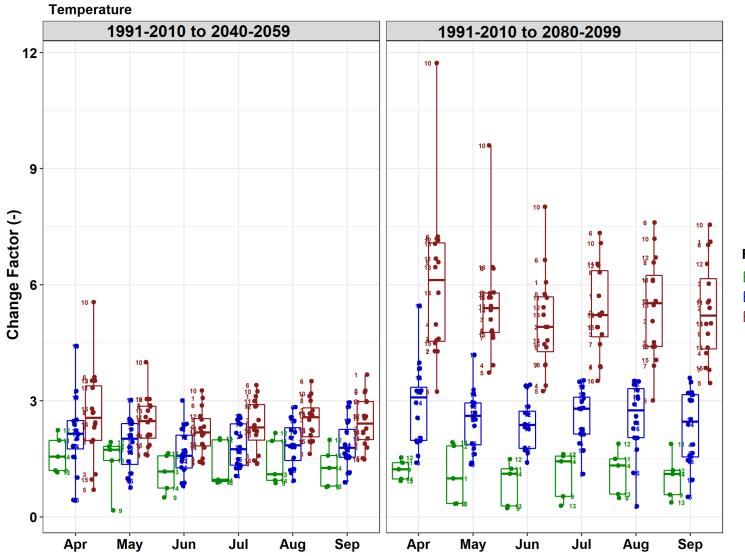
Around **42.8** km² area is covered with glaciers.


The largest glacier is Shani glacier (area 19 km²)

It is situated in Hunza basin about 42 km away from Gilgit city and 208 km from **K2** (the second largest mountain range in world) in the Gilgit-Baltistan region of Pakistan, in the southern side of Karakoram

The elevation of Naltar catchment varies from 2270 m to 5869 m with mean elevation 4064 m.

The average annual precipitation and temperature recorded at Naltar station are **685 mm and 6.5**°C


Hourly P, T, RH, V, p, R meteorological station and daily runoff in Naltar station close to the outlet

List of CORDEX South Asia (WAS-44) Regional Climate Model experiments, deriving GCMS, available RCPs

RCM	RCM description	Contributing CORDEX modelling center	SR NO	Driving CMIP5 GCM	Contributing CMIP5 modeling center	RCP26	RCP45	RCP8
	The Abdus Salam		RCM1	CCCma-CanESM2	Canadian Center for Climate Modelling and Analysis (CCCma), Canada	×	1	✓
	International Centre for Theoretical	Centre for Climate Change Research	RCM2	CSIRO-QCCCE-CSIRO	Commonwealth Scientific and Industrial Research, Australia	*	√	✓
IITM- RegCM4	Physics (ICTP) Regional Climate Model version 4	(CCCR), Indian Institute of Tropical Meteorology (IITM), India	RCM3	IPSL-IPSL-CM5A-LR	Institut Pierre Simon Laplace, France	×	✓	✓
			RCM4	MPI-M-MPI-ESM	Max Plank Institute for Meteorology, Germany (MPI-M)	×	✓	~
	(RegCM4; (Giorgi et al. 2012))		RCM5	NOAA-GFDL-GFDL-ESM2M	National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory (GFDL)	×	✓	1
	Rossby Centre Regional Atmospheric Model version 4 (RCA4; (Samuelsson et al. 2011))	Rossby Centre, Swedish Meteorological and Hydrological Institute (SMHI), Sweden	RCM6	CCCma-CanESM2	Canadian Center for Climate Modelling and Analysis (CCCma), Canada	×	√	✓
			RCM7	CNRM-CERFACS	National Centre for Meteorological Research, France	×	1	✓
			RCM8	CSIRO-QCCCE-CSIRO	Commonwealth Scientific and Industrial Research, Australia	×	✓	✓
			RCM9	ICHEC-EC-EARTH	Irish Center for High-End Computing, European Consortium	✓	✓	✓
			RCM10	IPSL-IPSL-CM5A-MR	Institut Pierre Simon Laplace, France	×	✓	✓
SMHI- RCA4			RCM11	MIROC-MIROC5	Model for Interdisciplinary Research on Climate (MIROC), Japan, Agency for Marine-Earth Science and Tech	✓	✓	✓
			RCM12	MOHC-HadGEM2-ES	Met Office Hadley Centre for Climate Science	✓	✓	✓
			RCM13	MPI-M-MPI-ESM	Max Plank Institute for Meteorology, Germany (MPI-M)	√	1	✓
			RCM14	NCC-NorESM1-M	Norwegian Climate Center (NCC), Norway	✓	✓	✓
			RCM15	NOAA-GFDL-GFDL-ESM2M	National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory (GFDL)	*	1	1
MPI-CSC- REMO2009	MPI Regional model 2009 (REMO2009; (Teichmann et al.	Climate Service Center (CSC), Germany	RCM16	MPI-M-MPI-ESM	Max Plank Institute for Meteorology, Germany (MPI-M)	×	√	√

Seasonal cycle of additive climatological change factor of Temperature

PDSLIM Model Structure

(PDSM Ranzi & Rosso, 1991 for snow;

Ranzi et al., 2010 + ice; Grossi et al., 2013 + CC projections of glacier)

The PDSLIM model consist of two main cycles: time and spatial cycle:

In **time cycle**, model executed each hour of the day within a spatial cycle that calculates the individual components of the energy balance on each cell of the area of interest considered.

The energy available for glacierized surface is calculated by

$$H_m + H_c = S_{io} + L_{io} + H_l + H_s + H_p + H_g$$

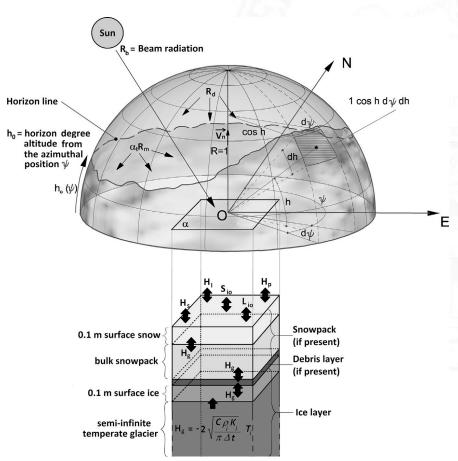
Here unit of all terms are W/m²

H_m: energy available for melt,

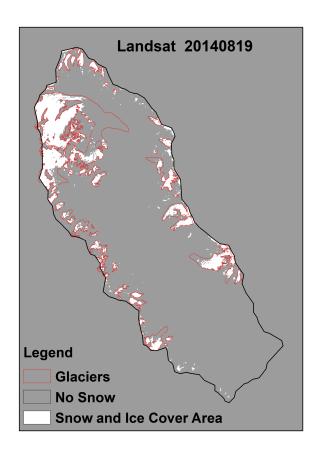
H_c: Internal Energy of the snow or ice layer,

S_{io}: net shortwave radiation,

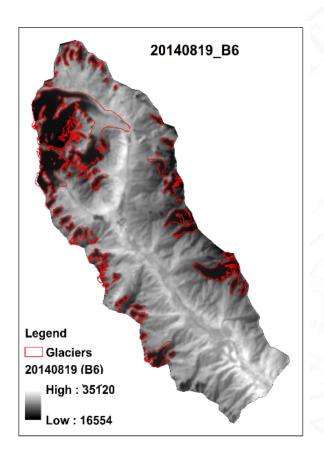
L_{io}: net longwave radiation,


H₁: latent heat,

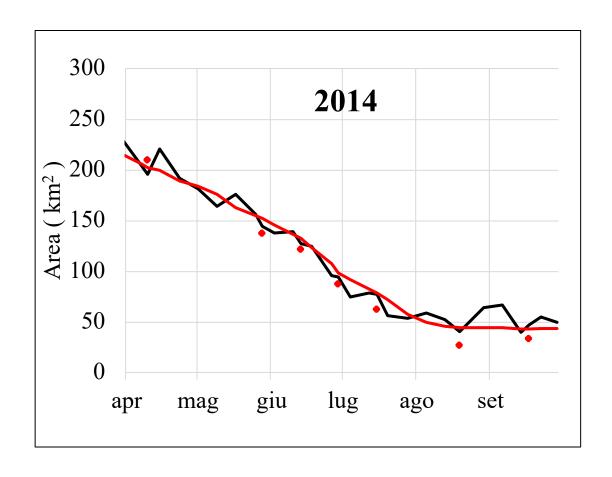
H_s: sensible heat,

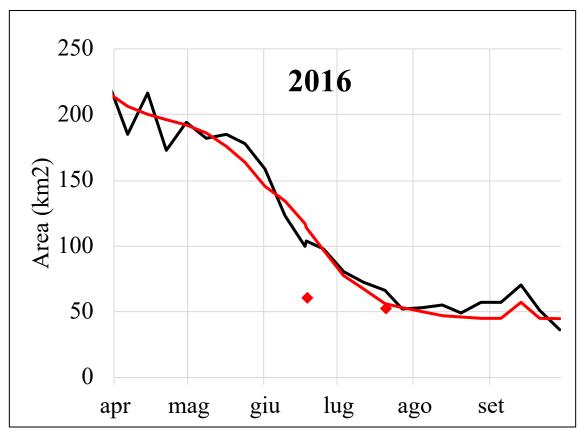

H_p: advective heat from precipitation,


H_g: Conductive heat at the bottom side of the snow or ice layer

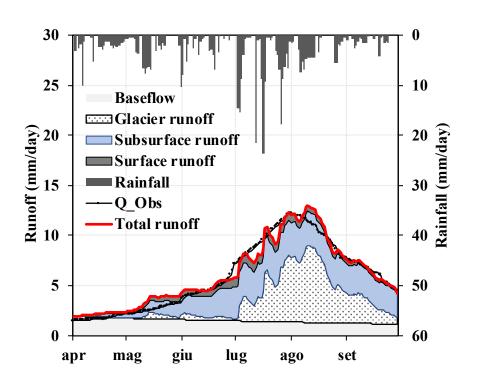


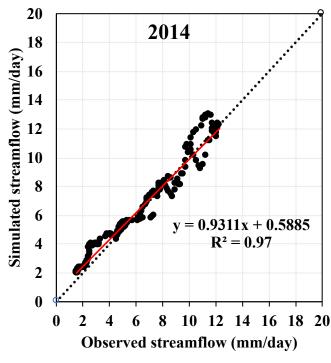
Results of simulation of Snow Cover Area depletion curves 2014





Results of simulation of Snow Cover Area depletion curves 2014 and 2016


Results of simulation of Snow Cover Area depletion


Year	NSE	ME (km²)	%Bias	MAPE(%)	RMSE (km²)	\mathbb{R}^2
2006	0.95	3.46	-1.50	13.43	13.38	0.96
2008	0.96	8.66	5.11	10.48	11.98	0.97
2009	0.98	1.62	0.99	7.58	7.83	0.98
2010	0.95	4.59	2.88	6.14	11.52	0.96
2011	0.97	2.83	4.27	10.02	9.96	0.98
2012	0.96	-0.90	-1.93	11.44	12.56	0.97
2014	0.96	-13.07	1.46	9.92	12.15	0.97
2016	0.95	5.44	1.74	8.42	11.31	0.97

Comparison of observed and simulated discharge at Naltar outlet for 2014 with a conceptual linear reservoirs cascade model. NSE 8-year average is 0.87 and 0.88 for calibration and validation

Mean mass balance for the control period, 2050 and 2090

Year	AAR Acc Area Ratio	Mean MB	2050_4.5	2050_8.5
2006	3%	-1772		
2008	3%	-1712		
2009	4%	-1341		
2010	22%	-1094		
2011	16%	-1454		
2012	11%	-1607		
2014	11%	-1600		
2016	17%	-1158		
Mean	7%	-1468	-2862	-4228
		Δ MB (mm)=	-1262	-2628

Conclusions

- ✓ The results exhibited satisfactory performance of the distributed energy-balance model against satellite-based snow cover area for all simulated years.
- ✓ Runoff simulations revealed good agreement with observed daily discharge obtained with NSE of 0.87 and 0.88 for calibration and validation period.
- ✓ From the actual (-1500 mm) and projected mass balance (-2900 mm by 2050_4.5; -4200 mm 2050_8.5) estimates and the MODIS+LANDSAT satellite images it appears that also in the Naltar catchment glaciers are going to retreat fast indicating an exception to the 'Karakoram anomaly'.

