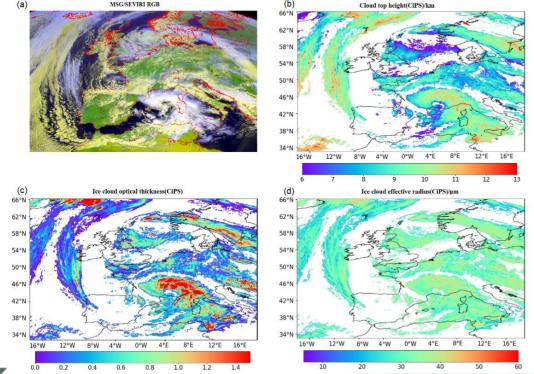


Observations of Microphysical Properties and Radiative Effects of Contrail Cirrus and Natural Cirrus over the North Atlantic

Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Christiane Voigt

Motivation


Aircraft-induced clouds (AIC) represent the largest aviation radiation forcing (RF), with open issues on microphysical properties and radiative effects

- > The difference between AIC and natural cirrus
- The evolution of contrails into contrail cirrus
- The accuray of top of atmosphere (TOA) shortwave (SW) RF

Data and approaches

- Experimental aspect
 - > Airborne data from the HALO aircraft in ML-CIRRUS (26.03.2014) (Voigt et al., 2017)
 - Microphysical properties from CiPS (thin cirrus) (Strandgren et al., 2017) applied to MSG satellite
 - ERA5 trace gas and natural cloud profiles
- Radiative transfer model (RTM)
 - Libradtran (Mayer and Kylling, 2005) calculations

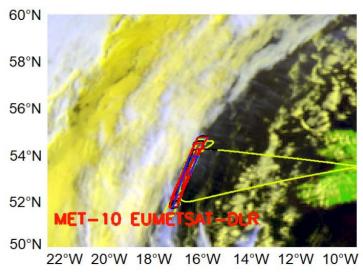
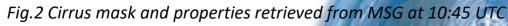



Fig.1 HALO track with measured natural cirrus (black), contrail cirrus (red) and contrails (blue) on top of a RGB on 26 March 2014

- Validation aspect
 - Reflected solar radiation (RSR) and outgoing longwave radiation (OLR) from RRUMS (Vázquez-Navarro et al., 2013) and GERB

Microphysical Properties of AIC and natural cirrus

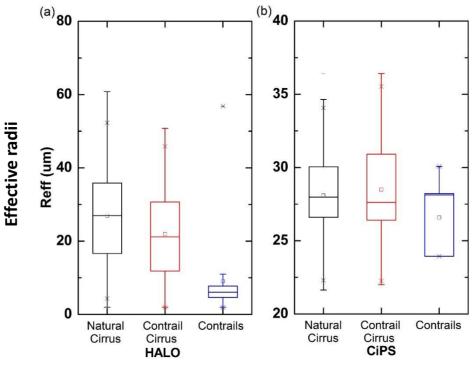
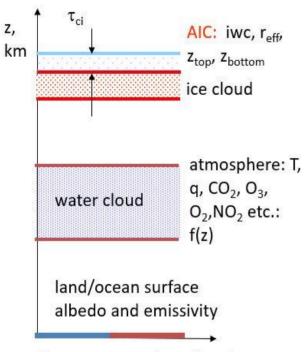



Fig.3 Reff from **HALO and CiPS** along the HALO flight track

- AIC and natural cirrus
 - Smaller Reff from contrail cirrus (HALO)
 - Satellite observations (CiPS) only show a tendency of smaller Reff for contrails

Estimation of TOA SW radiation using a radiative transfer model

homogeneous in x direction forward simulations libRadtran Fig.4 Cloud vertical structure

$$IWC = \frac{IOT_{CiPS}}{Ext * (CTH - CBH)}$$
(Baum et al. , 2011)

We combine airborne measurements, together with ERA5 natural cloud profiles to calculate TOA RSR and OLR for both cirrus and cirrus-free regions

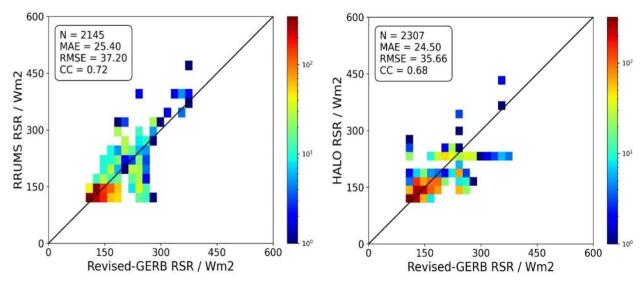


Fig.5 Comparison of TOA RSR from RRUMS results and RTM simulations for probed ice particles against revised-GERB products

RSRs from libRadtran are consistent with RRUMS and GERB, now we can compute RF with libRadtran (RSR/OLR for cirrus and cirrus-free regions)

TOA RF of AIC and natural cirrus

 The TOA RF for AIC and natural cirrus are calculated based on SW and longwave (LW) radiation for both cirrus and cirrus-free regions using libRadtran

Table 1. Recorded values for Fig.6

Cirrus/RF(W/m2)	SW	LW	Net
Natural cirrus	-7.0	7.8	0.8
Contrail cirrus	-7.0	8.7	1.7
Contrails	-5.8	6.2	0.4

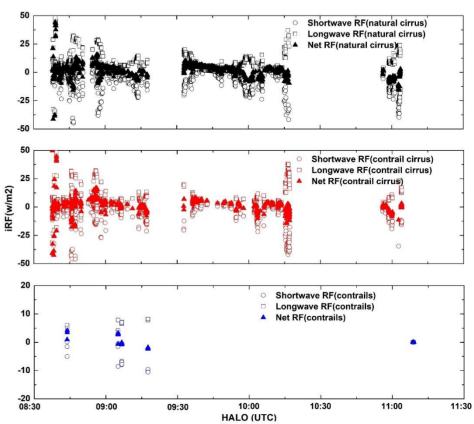


Fig.6 TOA RF for natural cirrus, contrail cirrus and contrails from our RTM simulations for HALO probed ice crystals on 26 March 2014

- Contrail cirrus RF is usually larger than that of natural cirrus
- > As contrails evolve into contrail cirrus, their net RF shows an increasing trend

Conclusions

- The average AIC IReff is about 18% smaller than natural cirrus. When contrails envolve, particle sizes increase.
- A TOA RSR and OLR estimation method is developed, **not relying on** observations for radiation for cirrus-free atmospheres
- AIC net RF is averagely warmer than natural cirrus, which increases when contrails evolve.

Contact: Ziming.Wang@dlr.de

