

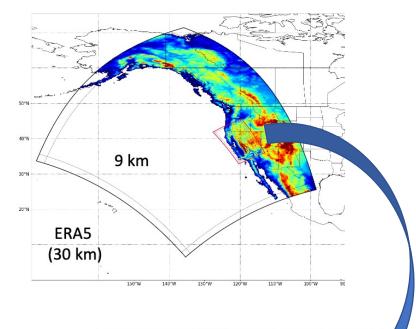
Improving confidence in model-based PMP: Sources of uncertainty in storm reconstruction and maximization

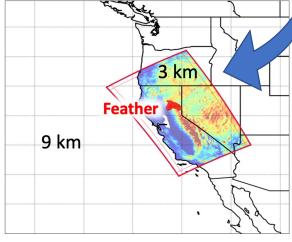
Emilie Tarouilly¹, Forest Cannon², Dennis Lettenmaier³

- ¹ Department of Civil & Environmental Engineering, University of California, Los Angeles, Los Angeles, CA
- ² Sr. Atmospheric Scientist, Tomorrow.io, Boston, MA
- ³ Department of Geography, University of California, Los Angeles, Los Angeles, CA

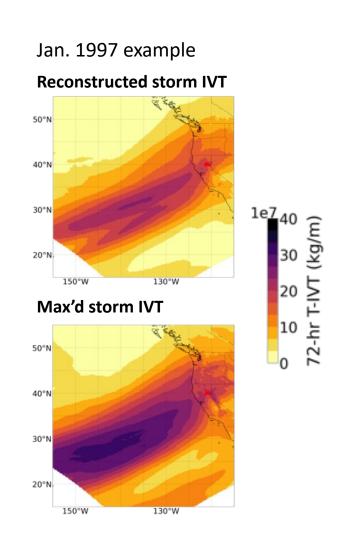
Damage to the Oroville dam spillway (February 2017) that prompted the evacuation of 180,000 people

Motivation

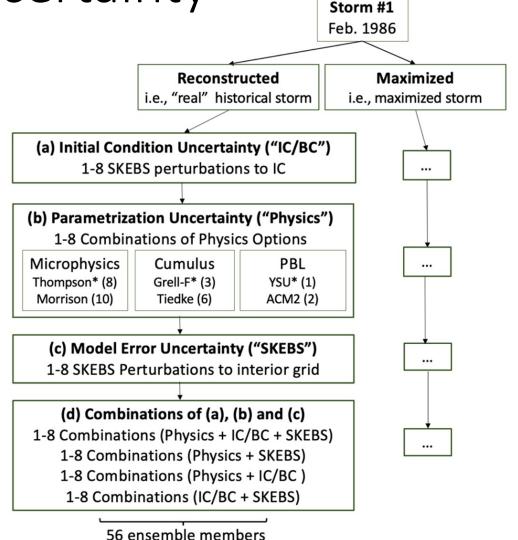

- Probable Maximum Precipitation (PMP):
 - "the greatest depth of precipitation physically possible"
- Recently developed "model-based PMP"
 - Leverage NWP models to reconstruct and amplify historical storms
 - Major improvement over current U.S. guidelines, which scale precipitation linearly
- Overarching challenge: how to obtain a PMP estimate of the appropriate magnitude, given:
 - Model uncertainty: choice of parametrization, initial conditions, model errors
 - Maximization uncertainty: how much moisture should be added? Where?


Goals: Improve the **robustness** of **model-based PMP** by identifying **sources of uncertainty** and reflect their impact on the range of possible PMP estimates by providing an **ensemble of values**

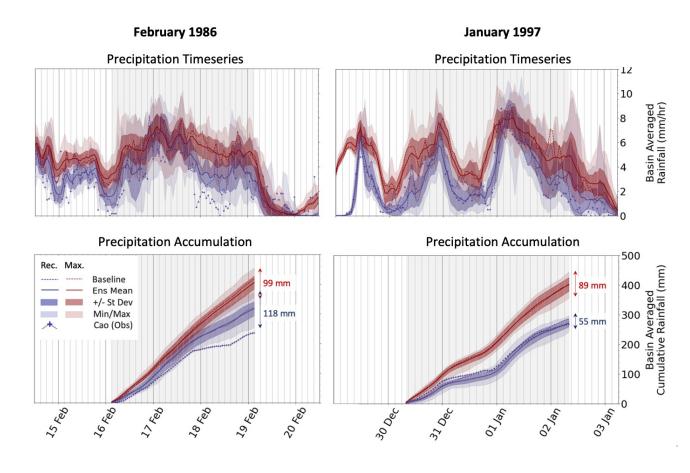
Methods: Study Area & Setup


- Feather River watershed, California (Oroville Dam)
- 2 major atmospheric rivers storms: Feb. 1986 and Jan. 1997
- Baseline run against which ensemble is compared: West-WRF (Martin et al., 2019)
 - West-WRF is the Center for Western Weather and Water Extremes (CW3E) operational model
- 2 nested domains (9 km and 3 km)
- Initial/boundary conditions provided by **ERA5 reanalysis** (30 km)
- Validation using **Cao et al. (2019)** gridded hourly precipitation (1/32 degree)

Methods: Baseline Storm Maximization


- Most widespread method: Relative Humidity Maximization (RHM) (Ishida et al., 2015)
- Maximize by adding moisture at the model boundaries (in the forcing dataset)
 - Increase moisture such that relative humidity is 100%
 - I.e., saturate the entire atmospheric column at all locations and model levels
- Added moisture leads to more precipitation than in the reconstructed historical storm
- PMP estimate is the total basin average precipitation total (current guidelines focus on 72-hour duration)

Part I: Model Uncertainty


Methods (Part I): Model Uncertainty

- Ensemble of simulations captures widely recognized sources of model uncertainty affecting precipitation
 - Error in initial conditions (forcing data)
 - Choice of parametrization
 - Model error (unresolved subgrid processes)
- **56 members** for both "reconstructed" and "maximized" versions of each storm
 - 112 ensemble members for each

Results (Part I): Reconstructed and Max'd Ensembles

- Reconstructed ensembles (blue) behave differently
 - Twice as much spread in 1986 (120 mm)
 - Feb. 1986 ensemble does not capture obs
- Ensemble mean captures temporal pattern and 72-hour total slightly better than baseline West-WRF (both storms)
- Maximized ensembles (red)
 - Roughly same amount of spread (~90 mm)
 - Magnitude of maximized precipitation is similar (~400 mm in 72 hours)

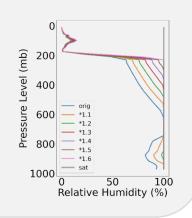
Ensemble 90th percentile is at most 107% of the ensemble mean, i.e., uncertainty does not seem to cause maximized totals to be potentially much greater

Part II: Maximization Uncertainty

Methods (Part II): Different ways to perform moisture maximization

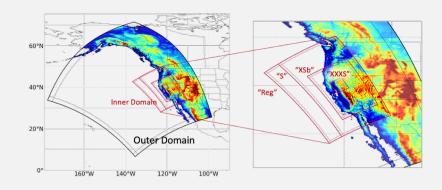
How much moisture?

RHM


 Set moisture to saturation at all pixels and for the entire column

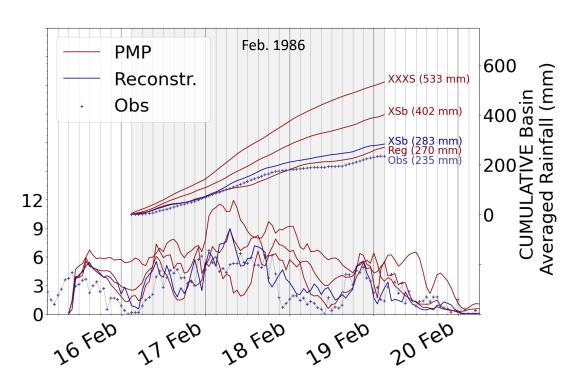
RHM-IVT

 Moisture increase in the path of the AR (IVT > 250 km/m/s)


RHP (Relative Humidity Perturbation)

 Moisture increase proportional to original profile

At what distance from the study basin?


 Vary size of inner domain such that moisture is added closer

Distance between domain edge and study basin:

'Reg": ~ 800 km "XSb": ~ 400 km "S": ~ 540 km "XXXS": ~ 60 km

Results (Part II): Comparing different variations of moisture maximization

Precipitation totals are much higher when <u>moisture added closer</u> to the basin, especially when beyond the topographic barrier

Conclusions

- Model uncertainty is small enough not to be a barrier to further development of model-based PMP
 - But PMP should be presented as an ensemble of values (rather than a single estimate) to appropriately reflect the uncertainty
- The way moisture maximization is implemented can be a large source of uncertainty
 - Where moisture is added can make a 2-fold difference in precipitation totals
 - Now that sensitivities have been identified, how do we decide how to implement moisture maximization?
- Challenges to address toward goals to (1) better **justify** the moisture changes we make and (2) **generalize** the guidelines to the U.S. West coast:
 - Develop better process understanding of how precipitation responds to moisture maximization
 - Will help justify how to produce a PMP storm that is large enough to be safe but not unrealistically large
 - Will support the selection of one or few approaches that can be applied to other basins without the need for trial-and-error

Land Surface Hydrology Research Group

Thank you

Questions/comments?

Emilie Tarouilly¹, Forest Cannon², Dennis Lettenmaier³

- ¹ Department of Civil & Environmental Engineering, University of California, Los Angeles, Los Angeles, CA
- ² Sr. Atmospheric Scientist, Tomorrow.io, Boston, MA
- ³ Department of Geography, University of California, Los Angeles, Los Angeles, CA

