

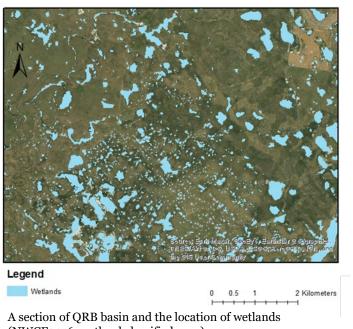
# Implementation of an upscaled probabilistic fill-and-spill method to simulate wetland-dominated landscapes

Presented by: Mahkameh Taheri

Co-author: Dr. James Craig,

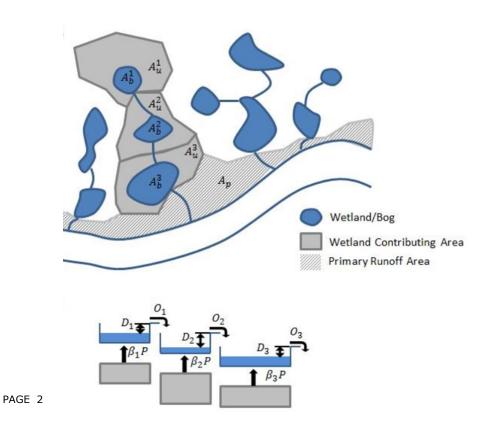
Department of Civil and Environmental Engineering

University of Waterloo


May 24, 2022



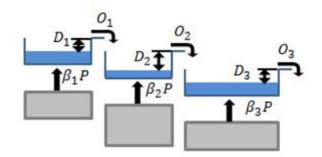



#### Introduction

Depressional wetlands in low gradient landscape



(NWCF2016, wetland classified map)


How to conceptualize the effects of depressional wetlands on hydrological response of the basin?



#### **Upscaled Wetland Fill-and-Spill Model (UWFS)**

Available water to the single wetland cascade  $(I_1)$ :

$$I_1 = \left(\frac{A_u^1}{A_b^1} \propto +1\right) \times P = \beta_1 \times P$$

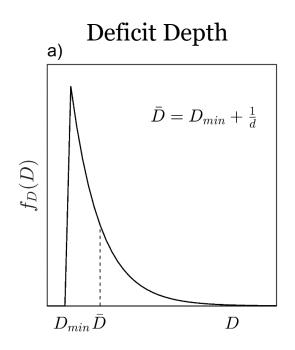


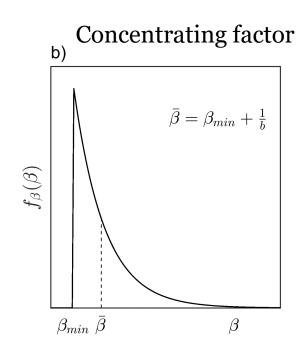
Potential and actual outflow from single wetland  $(O_1)$ :

$$O_1^* = \beta_1 P - D_1, \ O_1 = \max(O_1^*, 0)$$

β - Concentrating factorD- wetland deficit

 $A_b$ - wetland/bog area


 $A_u$ - contributing area






#### **Upscaled Wetland Fill-and-Spill Model (UWFS)**

Defining the spatial heterogeneity of the watershed





Distribution of outflow from the basin:

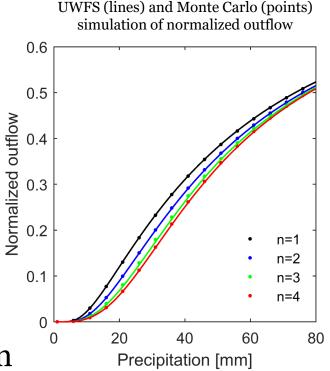
$$f_{O_1^*}(O_1^*) = \int_{-\infty}^{\infty} f_{\beta P}(x) f_D(x - O_1^*) dx$$





#### **Analytical vs Monte Carlo solution**

To find actual runoff from the basin


Analytical solution to Mean outflow:

$$\langle O \rangle = \int_0^\infty O f_O(O) dO$$

Monte-Carlo solution:

We sample from the deficit and concentrating factor distribution and then solve the water balance equation:

$$O_1^* = \beta_1 P - D_1, \ O_1 = \max_{PAGE 5} (O_1^*, 0)$$





#### **UWFS** algorithm in RAVEN

- Raven is a fast and flexible hydrologic modelling framework
- It has over 100 hydrological process algorithms
- It is open access and new hydrological processes could be implemented in the source code written in C++.



http://raven.uwaterloo.ca/

### Case study: Moose jaw river watershed

Located inside Qu'Appelle River Basin in Saskatchewan, Canada

Area: 9,230 *km*<sup>2</sup> Study period 2000-2017

Meteorological forcing data: RDRS-v2 (<u>CaSPAr website</u>)

Historical hydrometric data of the stream flow:

Water Survey Canada

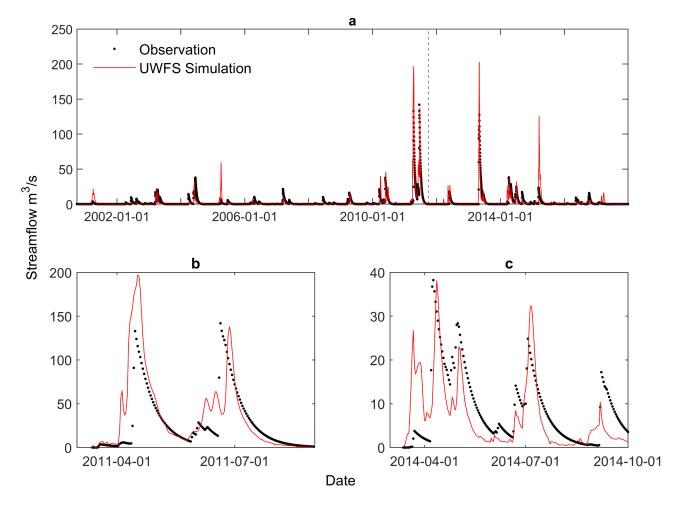
The shapefiles of the Qu'Appelle river basin and its sub-basins:

<u>ECCC hydro network</u>








#### Calibration using OSTRICH

- Parameter estimation at this basin is been done using Ostrich.
- Ostrich is configured to optimize the Raven model using Dynamically Dimensioned Search (DDS) Algorithm.
- A total of 23 parameters (water balance, land use, and soil parameters) and thousands of iterations are set for optimization.

| Metric      | NSE  | KGE  | PBIAS |
|-------------|------|------|-------|
| Calibration | 0.61 | 0.68 | 5%    |
| Validation  | 0.65 | 0.6  | 20%   |



#### **Results**







#### **Concluding remarks**

• The upscaled fill-and-spill model presented here is the first closed form upscaled runoff model which explicitly considers lateral flow based concentrating water and wetland connectivity

A low-parameter physically-based wetland model

• UWFS model is able to accurately simulate timing and peak magnitude of streamflow in low gradient landscape.





#### References

- http://raven.uwaterloo.ca/
- https://wateroffice.ec.gc.ca/search/historical e.html
- https://caspar-data.ca/
- https://www.canada.ca/en/environment-climate-change.html
- https://www.ducks.ca/initiatives/canadian-wetland-inventory/



## UNIVERSITY OF WATERLOO



#### **FACULTY OF ENGINEERING**

Contact: mahkameh.taheri@uwaterloo.ca