Deciphering CH₄ emission pathways in a reed ecosystem employing chamber measurements and stable carbon isotope signatures #### universität wien ### Wetland ecosystem with reed - mosaic of reed stocks, water and sediment patches - → temporal variability - → effects of climate change - release sediment-produced CH₄ emission - various pathways of CH₄ emissions - biogenic source of methane (Whiticar 1999): -80 to -50 % of δ^{13} C-CH₄ - methanogenesis (Whiticar et al. 1986): - \circ hydrogenotrophic: -110 to -80 ‰ of δ^{13} C-CH₄ - \circ acetoclastic: -65 to -50 % of δ^{13} C-CH₄ ## Study site: Reed belt at Lake Neusiedl coordinates: N 47.7693°, E 16.7576° - shallow steppe lake - nature zone of the National Park Lake Neusiedl - reed belt dominated by Phragmites australis - special water chemistry (e.g. alkaline and saline character) Location of the study site in Austria © Google Earth 2022 (Image Landsat/Copernicus) #### **Methods** - seasonal 24 h measurement campaigns for one year (approx. every 3 months) - chamber measurements with Picarro G2201-i #### **Different Pathways** Plant-mediated transport Diffusion: water/air interface Diffusion: soil/air interface Ebullition of gas bubbles #### universität wien #### **Results:** CH₄ flux of the diffusion and plant-mediated pathways #### universität wien #### **Results:** δ¹³C-CH₄ of the diffusion and plant-mediated pathways # **Results:** Keeling plot - Source signature δ¹³C-CH₄ from plant-mediated and diffusion transport | | Spring | Summer | Autumn | Winter | |-------------------------------------|---------------|---------------|---------------|---------------| | Keeling plot intercept ± 95% CI [‰] | -56.88 ± 4.46 | -61.81 ± 4.12 | -74.37 ± 4.58 | -67.60 ± 9.88 | | Spearman rho | 0.54 | 0.71 | 0.91 | 0.39 | | Spearman p-value | <0.0001 | <0.0001 | <0.0001 | 0.0004 | ### **Results:** CH_4 flux and $\delta^{13}C$ values of Ebullition pathway | | Spring | Summer | |--|--------|--------| | mean CH ₄ -flux [mg m ⁻² h ⁻¹] | 0.37 | 4.88 | | | Spring | Summer | |--|--------|--------| | mean δ^{13} C-CH ₄ [‰] | -60.83 | -59.29 | ### wien Conclusion - highest CH₄ emissions found in summer season - plant-mediated transport has the highest CH₄ fluxes in each season - significant difference in CH₄ fluxes between plant-mediated and diffusion pathways per season - Keeling plot source signatures $\delta^{13}\text{C-CH}_4$ differ between the seasons and are most depleted in Autumn - only the measured $\delta^{13}\text{C-CH}_4$ values from the ebullition pathway differ clearly from all other pathways - δ^{13} C-CH₄ values from ebullition pathway approx. -60 ‰, show a biogenic source of methane # Deciphering CH₄ emission pathways in a reed ecosystem employing chamber measurements and stable carbon isotope signatures