Combined storm and meteotsunami hazards

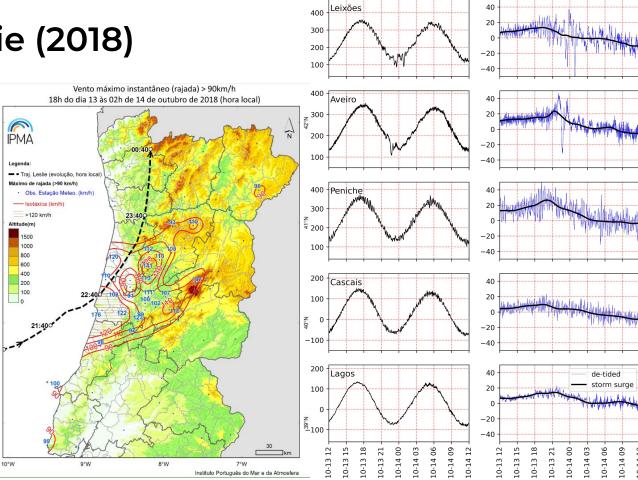
Through data analysis and numerical simulation

Jihwan Kim, Rachid Omira and Cora Dutsch

jihwan.kim@ipma.pt

IPMA, Instituto Português do Mar e da Atmosfera
Lisboa, Portugal

Meteotsunamis in Portugal

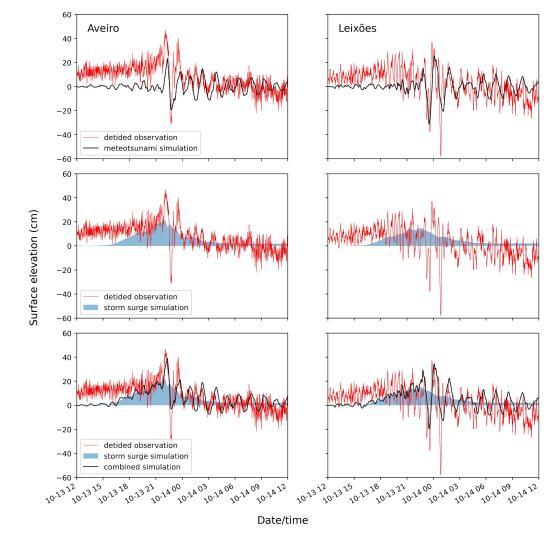

- **Meteorological tsunamis or Meteotsunamis** are hazardous tsunami-like waves (1 min 2 hr) with atmospheric origin ¹.
- Different from storm surges and wind waves.
- Sudden atmospheric pressure jump is the main origin of meteotsunamis.
- How many meteotsunamis are in Portugal?
 - o Two confirmed cases: July 6-7, 2010² and June 25-26, 2011³
- Using thresholds from previous study⁴, we identified 31
 meteotsunamis associated to a sudden pressure jump 2010-2019
- 11 cases are related to extratropical/tropical storms (ex-Hurricanes) or European winter storms.

Hurricane Leslie (2018)

- Landfall at 22:40 on 13
 October 2018
- 998 hPa, max. gust of
 49 m/s at landfall
- Max. air pressure change: 6.1 hPa/10 min at Aveiro

(a) Original signal

(b) Detided

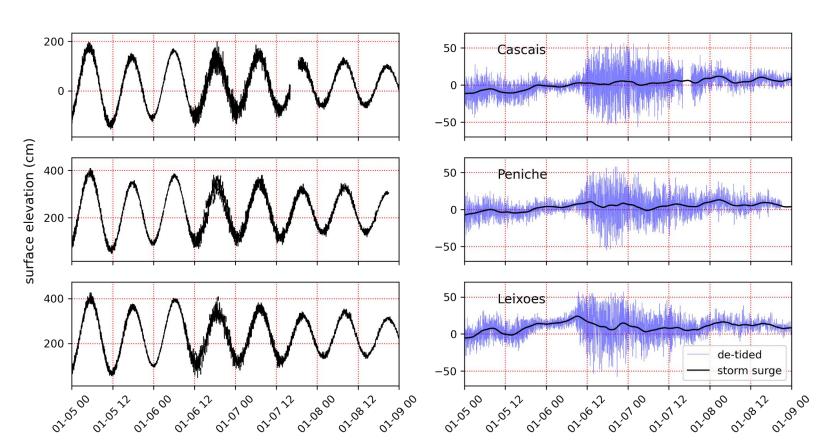

Numerical results and summary

Storms may accompany a sudden air pressure change which may induce meteotsunamis.

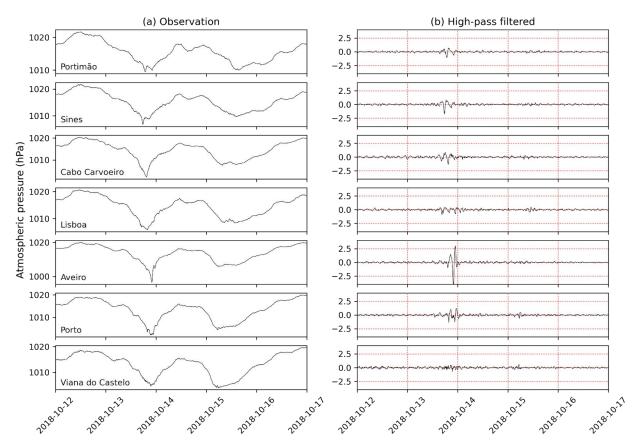
Coast of Portugal is vulnerable to storms and meteotsunamis.

Combining storm surge and meteotsunami simulations can improve to reproduce the observed waves.

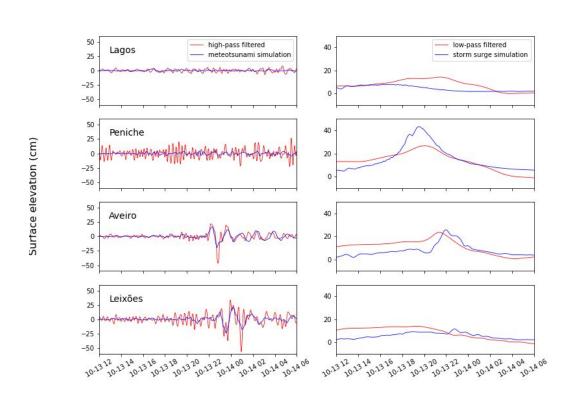
Thank you!

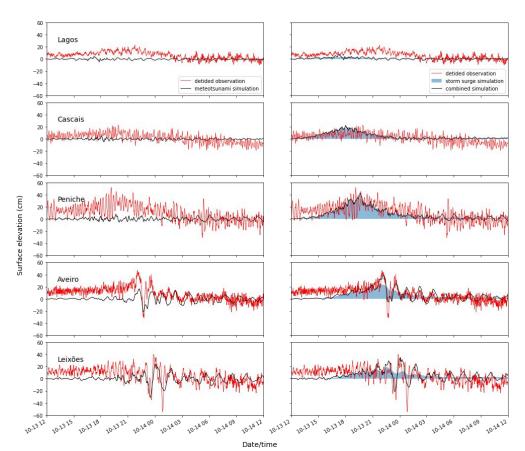

References

- 1. Rabinovich, Alexander B. "Twenty-seven years of progress in the science of meteorological tsunamis following the 1992 Daytona Beach event." *Pure and Applied Geophysics* 177.3 (2020): 1193-1230.
- 2. Kim, Jihwan, and Rachid Omira. "The 6–7 July 2010 meteotsunami along the coast of Portugal: insights from data analysis and numerical modelling." *Natural Hazards* 106.2 (2021): 1397-1419.
- 3. Frère, A., et al. "Sea level surges of June 2011 in the NE Atlantic Ocean: observations and possible interpretation." *Meteorological Tsunamis: The US East Coast and Other Coastal Regions.* Springer, Cham, 2014. 179-196.
- 4. Dusek, Gregory, et al. "A meteotsunami climatology along the US East Coast." *Bulletin of the American Meteorological Society* 100.7 (2019): 1329-1345.
- 5. https://coast.noaa.gov/hurricanes
- 6. Mandli, Kyle T., et al. "Clawpack: building an open source ecosystem for solving hyperbolic PDEs." *PeerJ Computer Science* 2 (2016): e68.
- 7. Oliveira, Tiago CA, Edwige Cagnin, and Paulo A. Silva. "Wind-waves in the coast of mainland Portugal induced by post-tropical storms." Ocean Engineering 217 (2020): 108020.


Details

- Coastal impact of Leslie was minimal. One reason may be the low tide at the time of the landfall.
- Data collected internally from IPMA
- Threshold for identifying Meteotsunamis
 - Larger than 4-sigma waves from two tidal gauges
 - 1.5hPa/30 min of atmospheric pressure change
- Numerical simulation using GeoClaw (www.clawpack.org)
 - Storm surge: Holland 1980 model, https://ftp.nhc.noaa.gov/atcf/
- Storm Christina (2014): This was an European storm, and generated large waves but the pressure jump was small (0.7hPa/10min). Storm surge modeling was not possible since the storm data was not available. We performed meteotsunami simulations, and numerical results suggested that Christina may have generated infragravity waves.
- At Peniche, there is a local resonance due to the harbor and wide continental shelf area.


Christina (2014) - Tide stations


Leslie - Atmospheric pressure

Leslie - Numerical simulation

Leslie - Numerical simulation

