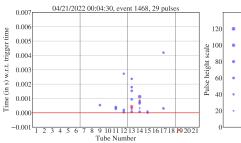


Multiple interactions in a Neutron Monitor

J. Clem¹, P. Evenson¹, **P.-S. Mangeard**¹, W. Nuntiyakul², D. Ruffolo³, A. Sáiz³, A. Seripienlert⁴, and S. Seunarine⁵

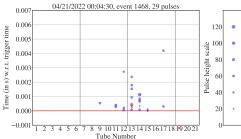
¹Bartol Research Institute, University of Delaware, Newark DE, USA, ²Chiang Mai University, Chiang Mai, Thailand, ³Mahidol University, Bangkok, Thailand, ⁴National Astronomical Research Institute of Thailand (NARIT), Chiang Mai, Thailand, ⁵University of Wisconsin River Falls, River Falls WI, USA

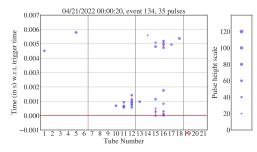
EGU 2022

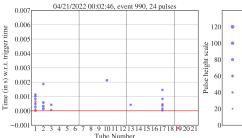


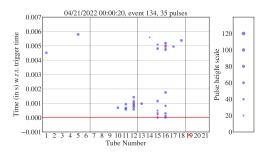
- PSNM at Doi Inthanon, Thailand
 - 18NM64 + 2 unleaded tubes
 - High rate: 605-620 counts/second
 - \bullet Geomagnetic rigidity cutoff: $\sim 17 \text{GV}$

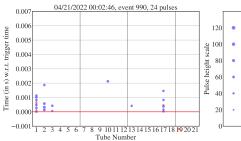
- PSNM at Doi Inthanon, Thailand
 - 18NM64 + 2 unleaded tubes
 - High rate: 605-620 counts/second
 - ullet Geomagnetic rigidity cutoff: $\sim 17 {
 m GV}$
- The electronics have been upgraded to record complex multiple-hit events



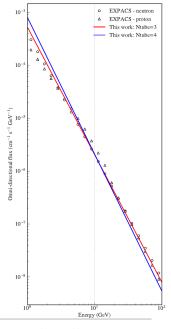

- PSNM at Doi Inthanon, Thailand
 - 18NM64 + 2 unleaded tubes
 - High rate: 605-620 counts/second
 - ullet Geomagnetic rigidity cutoff: $\sim 17 {
 m GV}$
- The electronics have been upgraded to record complex multiple-hit events
- What produces these large events?
 - Air shower core?
 - Very energetic secondary particle (SP)?
 - Coincidence between SP?




- PSNM at Doi Inthanon, Thailand
 - 18NM64 + 2 unleaded tubes
 - High rate: 605-620 counts/second
 - ullet Geomagnetic rigidity cutoff: $\sim 17 {
 m GV}$
- The electronics have been upgraded to record complex multiple-hit events
- What produces these large events?
 - Air shower core?
 - Very energetic secondary particle (SP)?
 - Coincidence between SP?

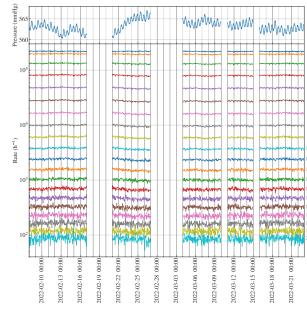


- PSNM at Doi Inthanon, Thailand
 - 18NM64 + 2 unleaded tubes
 - High rate: 605-620 counts/second
 - ullet Geomagnetic rigidity cutoff: $\sim 17 {
 m GV}$
- The electronics have been upgraded to record complex multiple-hit events
- What produces these large events?
 - Air shower core?
 - Very energetic secondary particle (SP)?
 - Coincidence between SP?
- Can we identify the source of an event?
- Can we use these events (or a subset) to evaluate the spectrum at rigidities above the cutoff?



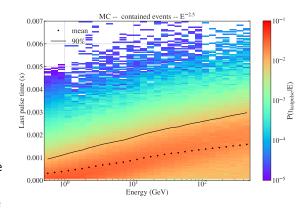
Preliminary results from Evenson et al. [2021]

- Event selection
 - 7 pulses or more
 - Contained (no hit in the edge tubes)
 - Compact (hits in adjacent tubes)
 - 3 tubes or 4 tubes
- Monte-Carlo Simulation
 - Neutron only
 - Incident angle: 0-45°
 - Energy: 1-100 GeV
- Analysis
 - Fit of the distributions of the number pulses
 - Neutron energy spectrum: Power law
- Conclusions
 - Promising results for a simple analysis
 - Energy range of the simulation should be extended
 - Extend the analysis to smaller events


Problematic

- High rate: ∼610 counts/second
- All pulses/events can't be recorded: too much disk space
 - How small could an event be?
 - How do we select the events?
- How long should the trigger time window be?
 - A long time window provides the full information of the multiple interactions in the detector
 - BUT we want to limit coincidences of multiple small events that could mimic larger events
 - HOWEVER we don't want to split long and large events in multiple smaller events

Decimation of small events with a high rate


- Every event with more than 20 pulses is recorded
- A gradual decimation based on the number of pulses per event has been implemented for the smaller events
- The decimation factor ranges from O(1000) to O(1) for events with 1 pulses to 20 pulses respectively
- Hourly rates of the smaller events are recorded
- A pressure dependence is observed for each rate

Trigger time window

- Simulated neutrons: 0.5-500 GeV
- The duration of the interactions in the NM increases with the energy
- A 7 ms time window records the most information but induces a large rate due to chance coincidences
- A 2 ms time window reduces the contamination from chance coincidences but split/duplicate large events
- The determination of the duration of the time window depends on the smallest event allowed. More systematic tests are needed to optimize the recorded data set

Conclusion

- We aim to extend the measurements provided by the neutron monitors
- Recent developments allow us to record detailed information about timing and position for events with multiple interactions in a neutron monitor
- Hourly count rates of events with multiple pulses are now recorded
 - The individual energy responses need to be determined
 - Their sensitivity to atmospheric properties (pressure, humidity) needs to be determined
- Detailed information of multiple-hit events are now recorded down to small events. To reduce the contributions of duplicated/splitted events and multiple coincidences, more work is needed on the determination of:
 - Trigger time window
 - Event selection
 - Decimation factors
- To be continued!

References

Paul Evenson, John Clem, Pierre-Simon Mangeard, Waraporn Nuntiyakul, David Ruffolo, Alejandro Sáiz, Achara Seripienlert, and Surujhdeo Seunarine. Multiple particle detection in a neutron monitor. PoS, ICRC2021:1240, 2021. doi: 10.22323/1.395.1240.

May 27, 2022

