

Laser Ranging Interferometers in GRACE-FO and for NGGM - Status

Vitali Müller^{1,2}, Laura Müller^{1,2}, **Malte Misfeldt**^{1,2}, Henry Wegener^{1,2},

Markus Hauk^{2,3,4}, Gerhard Heinzel^{1,2}, Kai Voss⁵, Kolja Nicklaus⁵

 ${f ^1}$ MPI Gravitational Physics, Space Laser Interferometry, Hannover, Germany

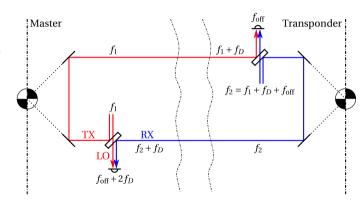
²Institut für Gravitationsphysik, Leibniz Universität Hanover, Germany

³DLR-Institut für Satellitengeodäsie und Inertialsensorik, Hannover, Germany

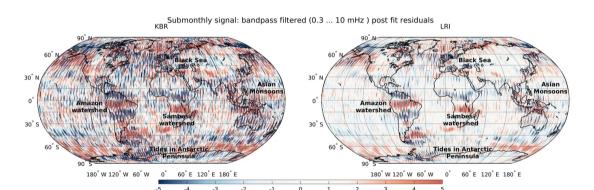
⁴ Helmholtz-Zentrum Potsdam (GFZ), Potsdam, Germany

⁵SpaceTech GmbH. Immenstaad. Germany

EGU General Assembly 2022

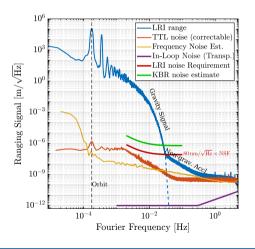


Contents


- LRI Working Principle
- LRI Measurements
- Recent/Planned LRI Activites
- Concept Design: LTI for NGGM/MCM/GRACE-I
- Conclusion

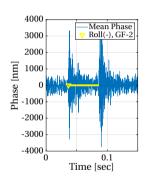
LRI Working Principle

- ► The LRI forms the very first laser interferometer operated between two seperate spacecraft [1, 11]
- The measured signal on the master side contains the desired ranging variations
- On the transponder side, the received light is amplified while maintaining the phase information (frequency offset digital phase-locked loop)

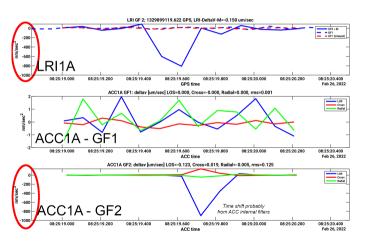


LRI Measurements Postfit Residuals

LRI and KBR show same signal (see e.g. Amazon watershed), but LRI has higher SNR / lower noise (especially over the oceans) Image Credit: [7]


LRI Measurements Amplitude Spectral Density

- ► The sensitivity of the LRI is limited by Laser frequency noise at the highest frequencies and Tilt-To-Length coupling (TTL) below. Both are well below the requirement
- ► The TTL can be measured during center-of-mass calibration maneuvers and can, in principle, be subtracted
- ▶ Due to the low noise, some fine structures of the gravity field can be explored, that can not be resolved with the KBR (see Ghobadi-Far et al. [2])
- ► The sensitivity of the LRI allows observation of non-grav. linear accelerations (line-of-sight)
 - Further, the LRI helps characterizing the spacecraft platform in terms of vibration measurements of thruster valves or resolving non-gravitational linear accelerations


LRI Measurements Phase Jumps (PJ)

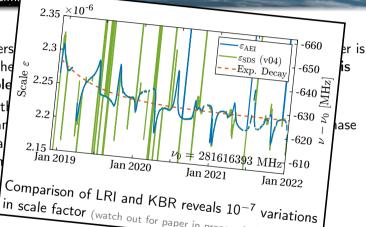
- ➤ The LRI phase exhibits undesired phase jumps (PJ) on thruster activation, caused by mechanical vibrations, that induce fast frequency variations in the laser crystal (see figure)
- A low-pass filtered and decimated version of these vibrations is visible in LRI1A, magnitude mostly below 1 μm
- ► For LRI1B, a PJ-removal algorithm removes most of the signature using a template-based approach for detection, modeling and subtraction
- ► See Laura Müller's presentation (EGU22-6109, today 9:30)

Thruster-shock induced PJ in diagnostic (high-rate) data

LRI Measurements Momentum Transfer Events (MTE)

- At some instances, LRI and ACC measure similar peaks in the line-of-sight acceleration
- Event rate ≈ 35 /year/SC
- Likely caused by Micro-Meteorites impinging the satellite body
- ► Here, the LRI helps disentangling gravitational signal from non-gravs and noise / measurement errors

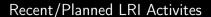
LRI Measurements Scale Factor Estimation: The Ruler


- The conversion factor from LRI measured phase to a range in meter is given by the resonance frequency of the optical cavity ν , which is very stable [12]
- However, the absolute value of the frequency is only known roughly and scale is determined on a daily basis by fitting LRI phase to KBR range
 - ⇒ Scale might be falsified by errors in LRI and KBR [5]

LRI Measurements

Scale Factor Estima

- The convers given by the very stable
- However, th roughly an to KBR ra \Rightarrow Scale r

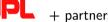

in scale factor (watch out for paper in preparation)

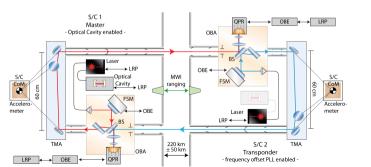
D...lar

LRI Measurements Scale Factor Estimation: The Ruler

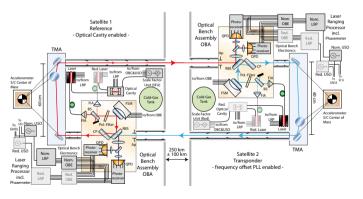
- The conversion factor from LRI measured phase to a range in meter is given by the resonance frequency of the optical cavity ν , which is very stable [12]
- However, the absolute value of the frequency is only known roughly and scale is determined on a daily basis by fitting LRI phase to KBR range
 - ⇒ Scale might be falsified by errors in LRI and KBR [5]
 - ⇒ Not possible without microwave ranging!
 - ⇒ For future missions: an absolute frequency reference, or **Scale Factor Unit (SFU)**, is needed. Further reading: [9], [10]

Recent:


- ► NADIR-pointing periods for analyzing ACC performance, LRI was off on these days (approx. 2 days per week from May-2021 until Feb-2022)
- ▶ Role Swap (Feb-23, 2022), switch reference/transponder role. GF-2 is now reference (as it was from launch until 12th December 2018).

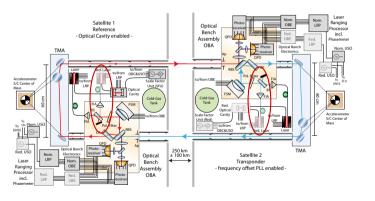

Planned:

▶ JPL LRI team prepares update of LRP flight software to mitigate effect of phase jumps in-flight

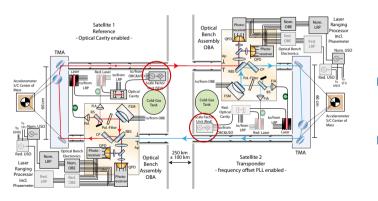

- Future missions in planning are the US-German Mass-Change-Mission (MCM) / GRACE-Icarus (launch \approx 2027) and the ESA-lead NGGM / MAGIC (planned \approx 2030s)
- Developed by the same team as the LRI consisting of:



- Future LRI-like instruments use the heritage layout (shown left)
- Ranging noise level expected to be similar to GFO-LRI, sufficient for gravity field maps
- Advance design with lessons learned, improve redundancy



Currently in (pre-) Phase A. All information on following slides is preliminary and might change.


Redundant Electronics:

- Hot-redundant Photoreceivers (as LRI)
- Cold-redundant OBE, LRP and USO on both sides
- USO now belongs to LRI, not MWI

Redundant Lasers:

- Two lasers on both sides
- Additional fiber injector and beam combiner needed (no mechanical fiber switching)

New Scale Factor Unit (SFU):

- Measurement of the absolute laser frequency ν (conversion factor from phase to range)
- Redundancy concept as for the optical cavity: One on each SC

- ► The LRI performs well after four years in orbit
- ▶ LRI-derived range has less noise, and thus higher SNR compared to KBR
 - Reveals weaker feature of the gravity field
- ▶ Phase Jumps are well understood and removed in LRI1B
 - will be mitigated in-flight by software update
- ightharpoonup LRI measures similar acceleration peaks as ACC ightharpoonup Micro-Meteorites

- Future missions are being studied in (pre-) phase-A activities: MCM/GRACE-I mission is planned to launch \approx 2027, ESAs NGGM/MAGIC is planned for \approx 2030s
- ▶ The next generation LRI might be developed by the same team (AEI, STI, JPL/NASA)
- ► Goal sensitivity is slightly better than LRI requirement
- ► Evolve LRI from technology demonstrator to main instrument with appropriate redundancy, include lessons learned
- ► Future missions might have an additional unit for determination of the "ruler", i. e., the absolute laser frequency

Contact Information

Questions?

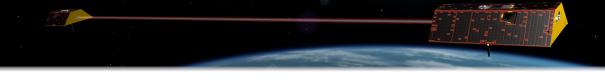
Malte Misfeldt for the LRI team at AEI, JPL and STI

malte.misfeldt@aei.mpg.de

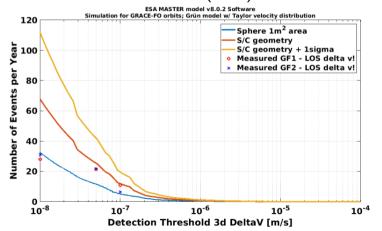
Max-Planck Institute for Gravitational Physics
(Albert Einstein Institute AEI)

Hannover - Germany

References / Further Reading |


- Klaus Abich et al. "In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer". In: Physical Review Letters 123.3 (July 2019). DOI: 10.1103/physrevlett.123.031101.
- [2] Khosro Ghobadi-Far et al. "GRACE Follow-On Laser Ranging Interferometer Measurements Uniquely Distinguish Short-Wavelength Gravitational Perturbations". In: Geophysical Research Letters 47.16 (Aug. 2020). DOI: 10.1029/2020g1089445.
- [3] Gerhard Heinzel et al. First light for GRACE Follow-On Laser Interferometer. [Online; accessed 09-August-2018]. July 2018. URL: http://www.aei.mpg.de/2277280/first-light-for-grace-follow-on-laser-interferometer.
- [4] Malte Misfeldt. "Data Processing and Investigations for the GRACE Follow-On Laser Ranging Interferometer". MA thesis. Institut für Gravitationsphysik, June 2019, p. 121. DOI: 10.15488/9639.
- [5] Malte Misfeldt et al. "Thermal Influence on the LRI Scale Factor". In: (Mar. 2021). DOI: 10.5194/egusphere-egu21-1242.
- [6] Vitali Müller et al. Comparing GRACE-FO KBR and LRI ranging data with focus on carrier frequency variations. 2022. DOI: 10.48550/ARXIV.2205.08862.
- [7] Vitali Müller et al. Nearly 900 days of laser measurements in Earth orbit. [Online; accessed 24-May-2021]. June 2021. URL: https://www.aei.mpg.de/718828/fast-900-tage-lasermessungen-in-der-erdumlaufbahn?c=26160.
- [8] K. Nicklaus et al. "Laser metrology concept consolidation for NGGM". In: International Conference on Space Optics ICSO 2018.
 Ed. by Nikos Karafolas et al. SPIE, July 2019. DOI: 10.1117/12.2536071.
- [9] Emily Rose Rees et al. "Absolute frequency readout derived from ULE cavity for next generation geodesy missions". In: Optics Express 29.16 (July 2021), p. 26014. DOI: 10.1364/oe.434483.
- [10] Thilo Schuldt et al. "Development of a compact optical absolute frequency reference for space with 1e-15 instability". In: Applied Optics 56.4 (Jan. 2017), p. 1101. DOI: 10.1364/ao.56.001101.

- [11] B. S. Sheard et al. "Intersatellite laser ranging instrument for the GRACE follow-on mission". In: Journal of Geodesy 86.12 (Dec. 2012), pp. 1083–1095. ISSN: 1432-1394. DOI: 10.1007/s00190-012-0566-3.
- [12] R. Thompson et al. "A flight-like optical reference cavity for GRACE follow-on laser frequency stabilization". In: Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings. IEEE, May 2011. DOI: 10.1109/fcs.2011.5977873.
- [13] Henry Wegener et al. "Tilt-to-Length Coupling in the GRACE Follow-On Laser Ranging Interferometer". In: Journal of Spacecraft and Rockets (July 2020), pp. 1–10. DOI: 10.2514/1.a34790.


Unsorted Appendix

LRI Working Principle

- ► The LRI is built in a "racetrack" configuration, since the line of sight between the two GFO spacecraft is blocked by cold-gas tanks and MWI antennas. A triple-mirror assembly (TMA) routes the beam around those.
- ► The TMA's properties ensure parallelity of the incoming and outgoing beam, and the TMA vertex (intersection point of mirror planes) is the LRI reference point.

Momentum Transfer Events (MTE)

Measured data (crosses, circles) match the predictions from particle density models. Deviation at $1\times 10^{-8}\,\mathrm{m\,s^{-1}}$ since MTE's can not be detected well in LRI data at these low Δv values.