AEROSOL IMPACTS FOR CONVECTIVE PARAMETERIZATIONS:

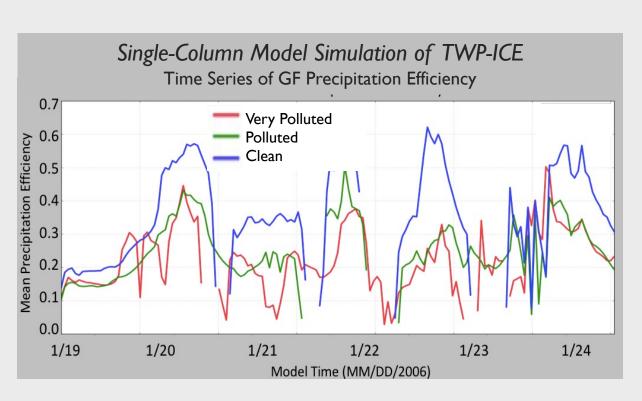
APPLICATIONS OF THE GRELL-FREITAS CONVECTIVE PARAMETERIZATION

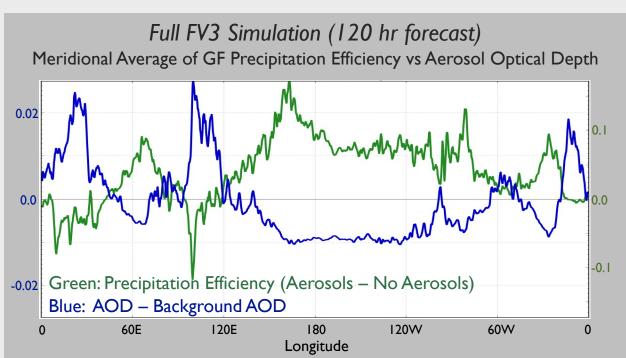
HANNAH C BARNES^{1,2}, GEORG GRELL², SAULO FREITAS³

¹COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES AT THE UNIVERSITY OF COLORADO BOULDER, ²NOAA GLOBAL SYSTEMS LABORATORY, ³INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE - BRASIL

EGU General Assembly 2022 May 23, 2022

THE GRELL-FREITAS (GF) CONVECTION PARAMETERIZATION

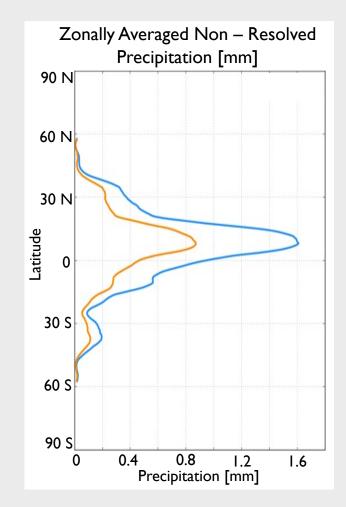

General Features

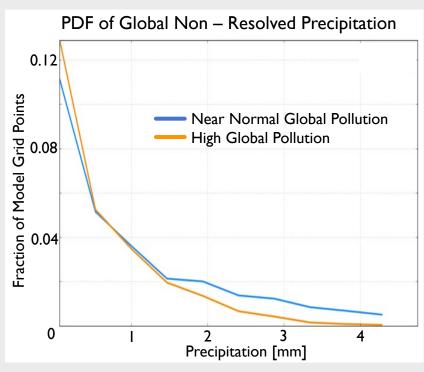

- Stochastic, scale and aerosol aware
- Scale-awareness based on Arakawa (2011) approach
- GPU version available with bit for bit results.
- Mass-flux based scheme
- Includes updrafts and downdrafts
- Represents deep, congestus, and shallow convection
- Originally published in Grell and Freitas 2014 (ACP)
 - Subsequent updates in Freitas et al. (2018, JAMES) and Freitas et al. (2021, GMD)

Details of Aerosol – Awareness

- Objective: Cost effective method to describe basic effects of aerosols
- Aerosol optical depth (AOD) defines a proxy for pollution / aerosols
 (Rosenfeld et al. (2008), Andreae et al. (2008))
 - Initial conditions based on MERRA2 climatology
- Processes influenced by aerosols
 - Auto-conversion cloud water to rain (Berry 1968)
 - Evaporation of rain (Jiang et al. 2010)
 - Aerosol wet scavenging (Lee and Feingold 2010, Wang 2013)
- Aerosol impact based on how far the AOD at a given point is from an assumed background AOD
 - Makes aerosol impacts most notable in very clean or very polluted environments
- Active in congestus and deep convection

GF AEROSOL – AWARENESS CONSISTENT RESPONSE ACROSS MODEL TYPES

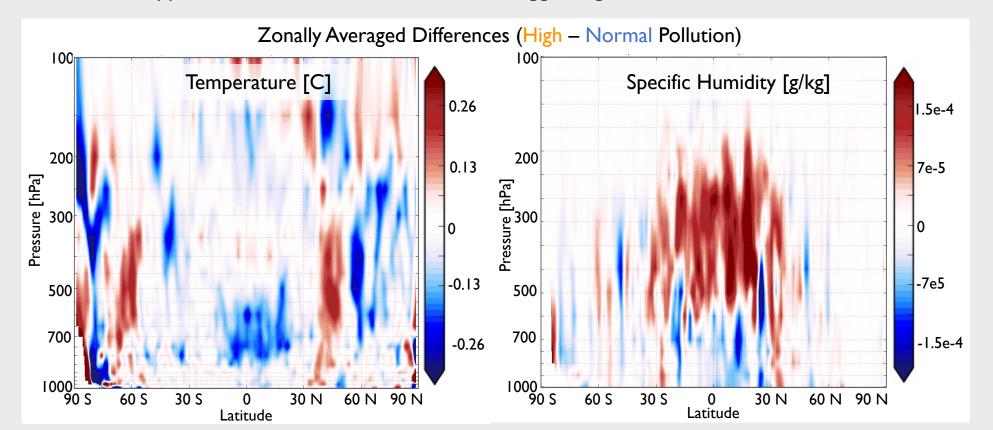




In both the single-column model and the full FV3 model precipitation efficiency is reduced when pollution is high.

GF AEROSOL – AWARENESSIMPACT ON GLOBAL MODEL FORECASTS

- Two global FV3 simulations for 120 hrs:
 - Near normal global pollution (blue line)
 - Heavily polluted world wide (orange line)
- GF captures the accumulation and size distribution changes associated with heavy pollution
 - Less non-resolved precipitation, more resolved precipitation
 - The non-resolved precipitation is less intense



GF AEROSOL – AWARENESS

IMPACT ON MODEL FORECASTS

- When the temperature and specific humidity fields are compared:
 - Lower levels are cooler and drier ——— suggesting stronger downdrafts
 - Upper levels are more moist ——— suggesting more convective detrainment

Future work:

- Tuning
- Include aerosol impacts on shallow clouds
- Compare results with WRF-Chem high resolution cloud resolving simulations over the Amazon region