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LW in rivers

Italy – 2021 (IGV.it) Germany – 2021 (The Guardian)

Italy – 2018 (Il Gazzettino)USA – 2018 (Chron.com)

Hydraulic risk Geomorphology
& habitat

USA – 2015 (https://www.kittitasconservationtrust.org/projects/lower-cle-elum-
river-restoration-project/)
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ORSA2D_WT

• LW model that couples flow 
hydrodynamics and wood mobilization, 
transport and accumulation.

• Two-way coupled model.

• Application to flume and field test 
cases.

LW modeling and flow regimes

High flow Low flow

LW mobilized by high water levels and 
velocities
Modeling focus:
LW transport and accumulation at inline 
structures
Hydrulic risk prediction

LW rarely mobilized
Modeling focus:
LW and LW jams stability
Effect of bed roughness, DTM accuracy
Effects of two-way coupling
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• Lagrangian approach for large wood transport

Translation on water surface

Rotation around vertical axis

• Two-way coupled 2D hydrodynamic model

𝐼
𝑑𝝎𝑏
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Other forces and torques expressions
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Side 

force

LW model ORSA2D_WT
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Two-way coupling
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To what extent the logs affect the water level rise?

Different scenarios: same log numbers, different orientation→ different local water levels.
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Tonon et al. 2018
• Northeast of Italy, 3899 km2 basin. 

• Study reach: 3.7 km, in the middle section of the river, with 
wide, gravel-bed valley, single and multiple thread channel 
patterns. 

• Highly disturbed river, large human impacts.

• Surveys: June 2015 – June 2016

• LW input from bank erosion and effects of fluvial transport.

• Bankfull discharge: 700 m3/s.

• Maximum discharge between surveys: 95 m3/s (RT < 1yr)

Piave river case study

Field surveys

Wood mobilization related to very low flow events: 
only 1.43% of surveyed logs moved…

…but they moved!
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Data & initial conditions (1)
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Low flow

• Hydraulic data for upstream and 
downstream BC

• Channel morphology (DTM & 
ortophoto)

• Bed roughness (Ortophoto & 
grain-size analysis)

• LW data (dimension, orientation, 
shape, presence of branches or 
roots, density, decay level)

• LW jams relations (number of 
logs)

2011
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Low flow
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5 m to 25 m, > 126000 cells



Data & initial conditions (2)
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2011 2015-2016

«Temporal» mismatch between logs and ortophoto/DTM!

> 2000 logs, with detailed
information



Modeling approach - test
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Exiting LW

Tonon et al. 2018 – ortophoto 2015-2016 Ortophoto 2011 (& DTM)

New LW

Stored LW

• Limit attention to the area 
circled in red

• Select 1 minor peak event

• Limit to 8 + 12 logs

• Check mobility for the rising 
and the falling limb of the 
hydrograph



Results (1)
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Rising limb - plateau

Q = 55 m3/s
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Results (2)
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Rising limb
Q=70 m3/s

Initial positions Final positions + specific dischargeInitial positions + specific discharge
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Results (3)

4Introduction Methods Results Conclusions

Falling limb
From Q = 95 m3/s to 36 m3/s in 8h 
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max. water levels
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Falling limb
From Q = 95 m3/s to 36 m3/s in 8h 
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Falling limb
From Q = 95 m3/s to 36 m3/s in 8h 
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Falling limb
From Q = 95 m3/s to 36 m3/s in 8h 
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Falling limb
From Q = 95 m3/s to 36 m3/s in 8h 
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→ Stable condition reached after 
180s

→ 3 more logs out of the mesh



LW in low flow…work in progress!
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Basic observations

• In-channel LW is 
mobilized even during 
low-flow events

• With the highest water 
discharge, 6/20 logs are 
exiting the domain.

• Different mobilization 
depends on different 
DTM geometry.

Tips for the perfect LW survey 
(    ) for low-flow events

• Temporal consistency of 
data.

• Maximum detail for 
orientation (not just 
parallel/ 
perpendicular/oblique).

• Wood type and decay 
levels to estimate 
density.

Lessons learnt for numerical
modeling

• Manage LW shape and 
position complexity.

• LW jams are mobilized
correctly?

• Model optimization to 
cope with large LW 
number.

Another option: scenario-based approach to cope
with model and data uncertainties
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