Trends and Drivers of Bedload and Suspended Sediment Fluxes in Global Rivers

Sagy Cohen¹, Jaia Syvitski², Thomas Ashely³, Rod Lammers⁴, Balazs Fekete⁵, Hong-Yi Li⁶

- ¹University of Alabama, USA
- ²University of Colorado at Boulder, USA
- ³Virginia Tech, USA
- ⁴Central Michigan University, USA
- ⁵The City College of New York, USA
- ⁶University of Houston, USA

Initial Funding by the National Science Sciences (GSS) Program (#1561082).

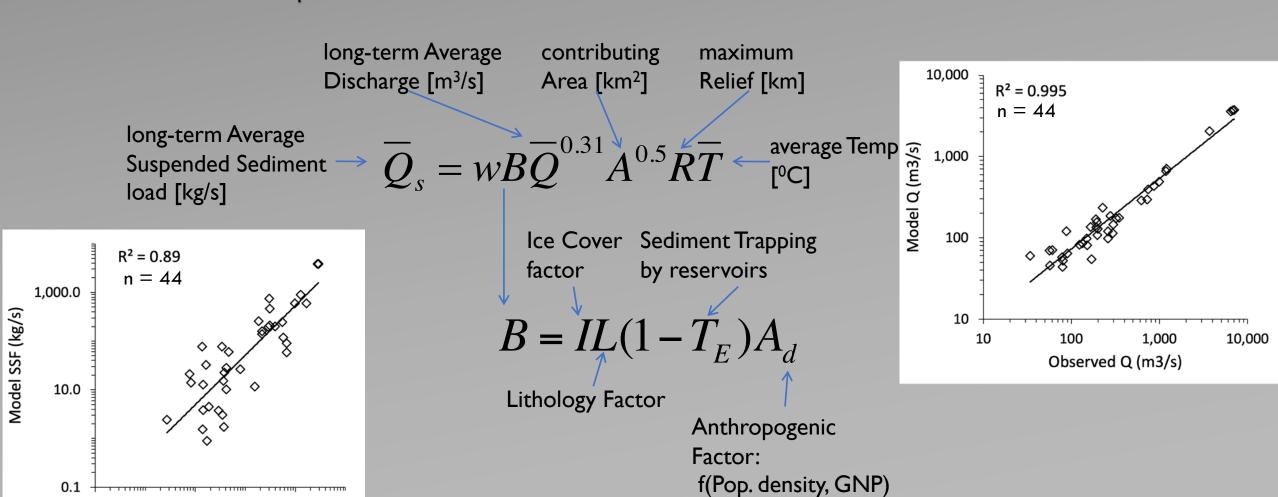
Introduction – Bedload Flux Modeling

- Bedload flux measurement and modeling are notoriously challenging.
- Knowledge, analytical and predictive capabilities remain limited, especially for large rivers.
- Several bedload equations have been proposed with parameterization which allows application within large-scale modeling frameworks.
- Coupled with recent advances in global hydrology and sediment modeling, (first-order) global-scale bedload models could now be explored.

Methodology

- We introduce a new bedload and suspended bed material (SBM) modules to the WBMsed global hydro-geomorphic model (Cohen et al., 2014).
- WBMsed include a suspended sediment flux (SSF) module, using the BQART (Syvitski and Milliman, 2007) and Psi (Morehead et al., 2003) equations.
- Simulate daily water discharge (Q) and sediment fluxes at 6 arc-min resolution (~I Ikm at the equator) in 'Disturbed' or 'Pristine' modes.
- Here we analyze long-term (30 yr) average (1990-2019) 'Disturbed' predictions.
- Mask small rivers; only include grid-cells with Q>30 m³/s.

SSF Module


0.1

10.0

Observed SSF (kg/s)

1,000.0

• Syvitski and Milliman (2007) summarized global controls on sediment flux with the BQART equation:

Bedload Flux Module

Lammers and Bledsoe (2018) following (Bagnold, 1980) bedload transport rate (q_b kg/m/s):

$$q_b = a[\omega - \omega_c]^{\frac{3}{2}} D_s^{-\frac{1}{2}} q^{-\frac{1}{2}}$$

Modified for (kg/s):
$$\mathbf{Q}_b = \left[a[\omega - \omega_c]^{\frac{3}{2}} D_S^{-\frac{1}{2}} \left(\frac{Q}{w} \right)^{-\frac{1}{2}} \right] w$$
; when $\omega > \omega_c$

Q – discharge (m³/s)

 ρ - fluid density (kg/m³)

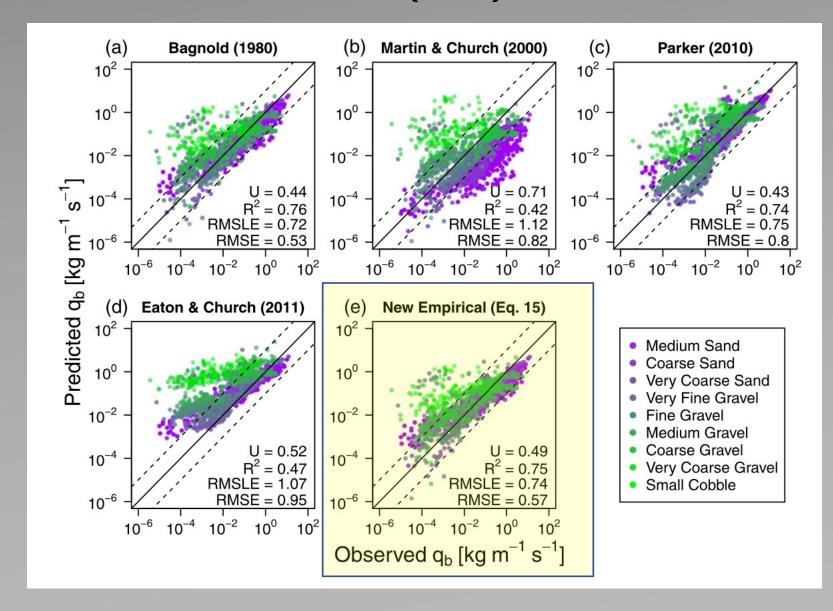
 D_s – representative grain size (m)

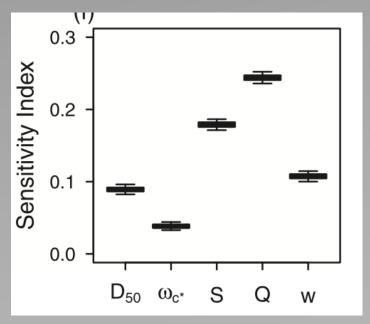
q – unit discharge (m²/s)

w – river width (m)

 ω – stream power (W/m²) = $\frac{\rho gQS}{w}$

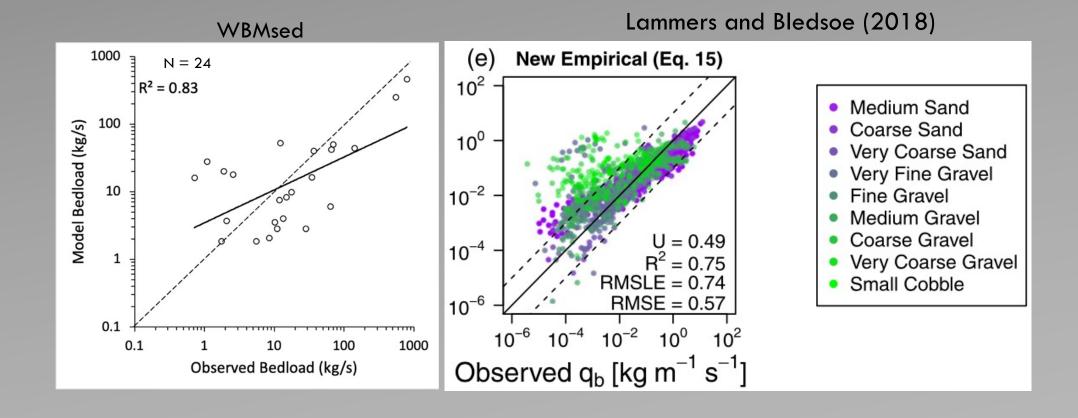
 $\omega_{\rm c}$ – critical stream power (W/m²)

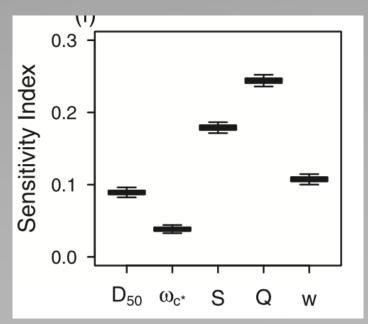

S – river slope (m/m)


g - acceleration due to gravity (9.81 m/s²)

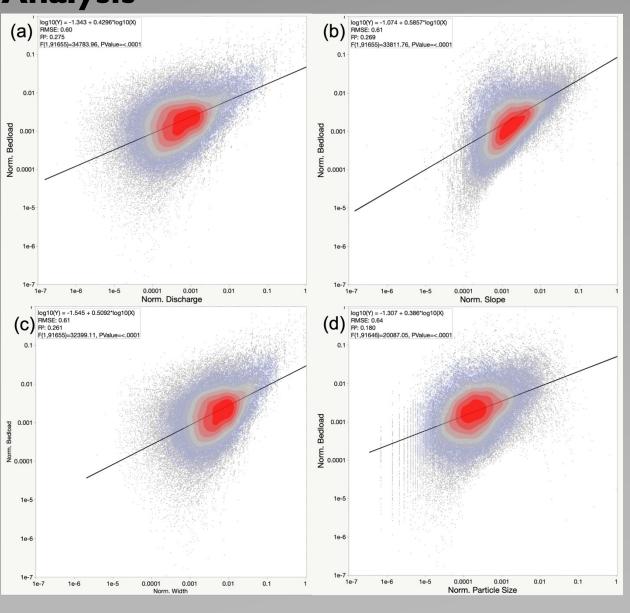
a – coefficient (0.0044)

Lammers, R.W., & Bledsoe, B. P. (2018). Parsimonious sediment transport equations based on Bagnold's stream power approach. *Earth Surface Processes and Landforms*, 43(1), 242-258.


Bedload Flux Equation Lammers and Bledsoe (2018)


From: Lammers and Bledsoe (2018)

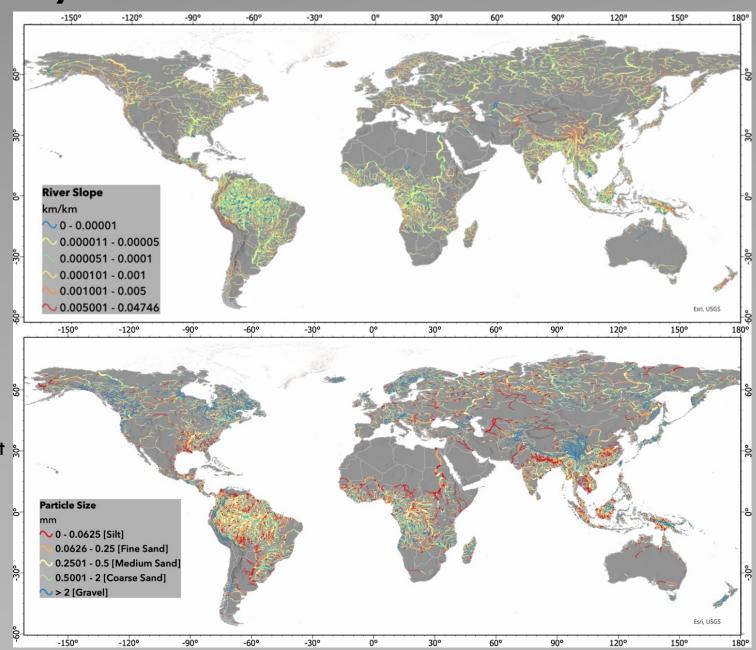
Results - Validation



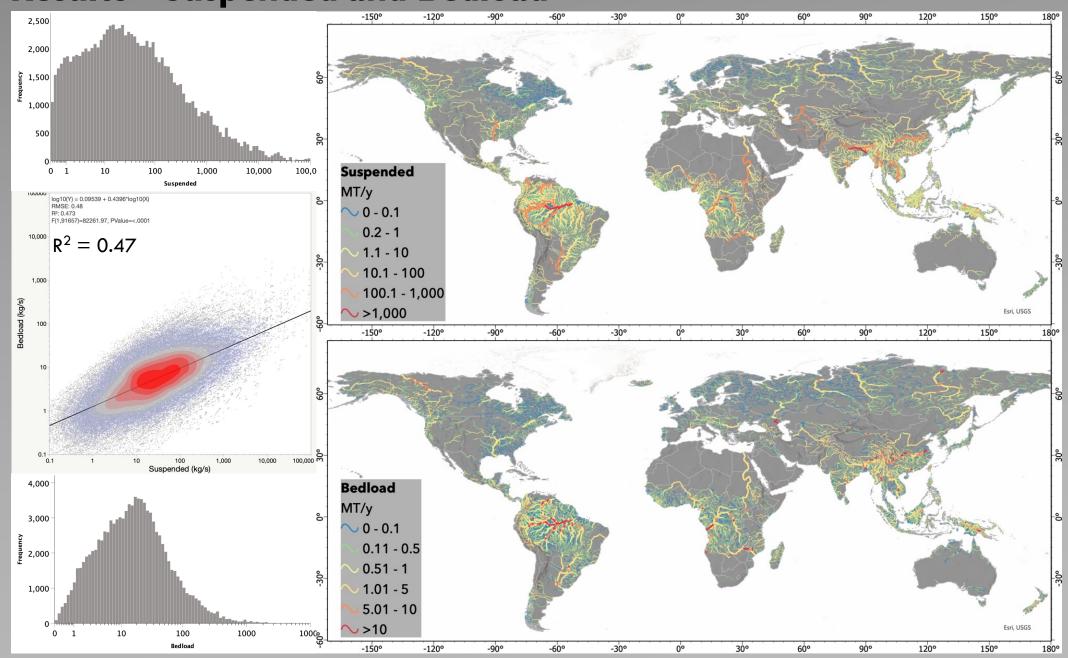
Results – Spatial Sensitivity Analysis

	Norm. Bedload			
	\mathbb{R}^2	Equation		
		Slope		
Norm. Discharge	0.27	0.42		
Norm. River Slope	0.27	0.58		
Norm. Particle Size	0.18	0.38		
Norm. River Width	0.26	0.50		

From: Lammers and Bledsoe (2018)

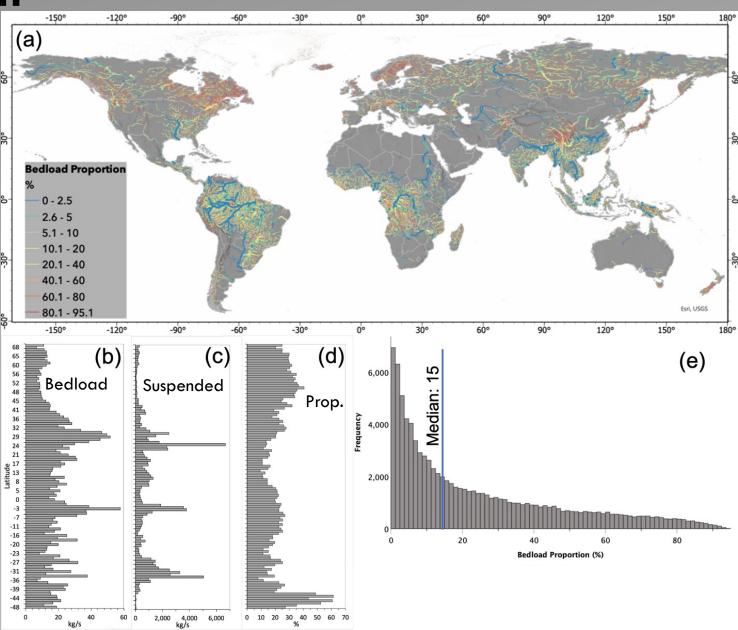

Results - Spatial Sensitivity

Smoothed from Lin et al., 2020

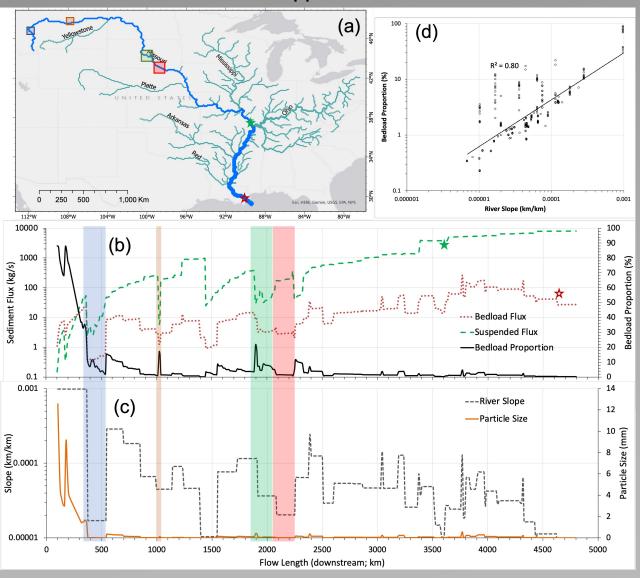

Derived empirically for a large dataset &

$$D_S = 3.77 \left(\frac{\overline{Q}}{W}\right)^{1.42} S^{1.26} \left(\frac{\overline{Q}_S}{W}\right)^{-0.5}$$

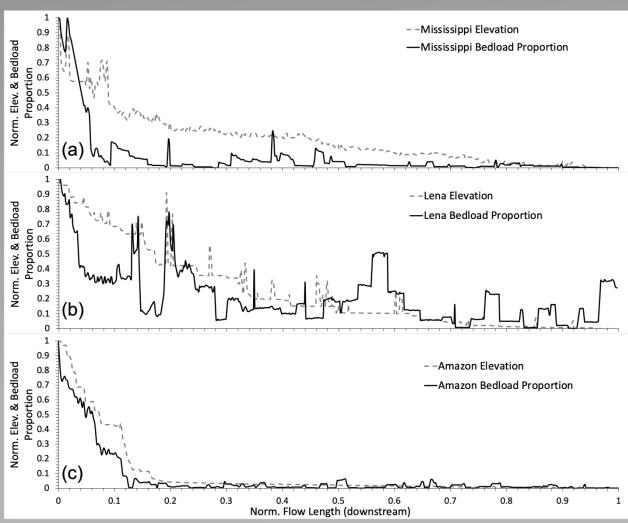
$$R^2 = 0.9$$



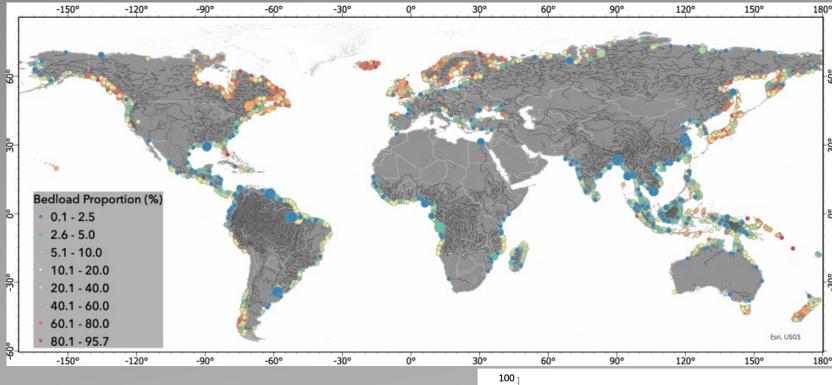
Results - Suspended and Bedload


Results – Bedload Proportion

	Mean	Median	Std.	
			Deviation	
Discharge [m³/s] (km³/y)	960 (30)	121 (3.8)	5679 (179)	ê
Suspended [kg/s] (Mt/y)	657 (20)	30 (0.9)	4169 (131)	ı
Bedload [kg/s] (Mt/y)	19 (0.6)	5 (0.15)	<i>55</i> (1. <i>7</i>)	
Suspended bed-material [kg/s] (Mt/y)	64 (2)	24 (0.7)	149 (4.7)	-300
Wash load [kg/s] (Mt/y)	602 (19)	8 (0.2)	4075 (128)	
Total sediment load [kg/s] (Mt/y)	676 (21)	41(1)	4195 (132)	
Bedload Proportion [%]	24	15	23	-Kn°
Bedload : Suspended load	0.6	0.2	1.2	ľ
River slope [km/km]	0.0003	0.0001	0.001	
Bed-material particle size [mm]	1.4	0.2	7.8	



Results – Longitudinal Profile


Mississippi/Missouri

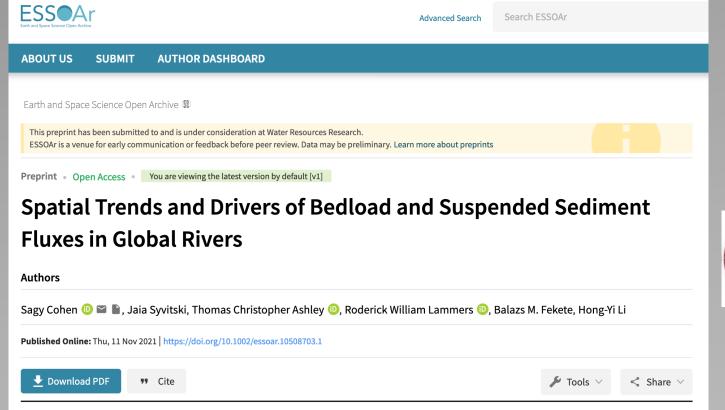
Normalized Profiles

Results – River Outlets

	100]								- 1
	90	Τ	8						
	80		-	L					1
(%)	70				8				1
rtion	60	Ц,			8 8	•			1
Bedload Proportion (%)	50				。 8	•			1
oad F	40					•	•	•	
Bed	30	×			0	•	•	•	
	20		×	:	T	Ť			
	10				<u> </u>	7	8	8	
	o	<u> </u> >30	<u></u> >1	 00	>500	>1,000	>2,500	>5,000	-

	Filter Q	Mean	Median	Sum
		Mean	- Median	
	(m ³ /s)			(MT/y); Calculated
				(%)
Susp. Sediment	>30	321	20	16,636*
	>100	672	72	15,146*
(kg/s)				
	>500	2408	367	12,223*
	>1000	4261	968	10,984*
	>2500	9337	2371	9,503*
	>5000	15,866	4402	8,172*
Bedload (kg/s)	>30	1 <i>7</i>	6	1,145
	>100	22	8	661
	>500	42	16	294
	>1000	66	30	239
	>2500	109	56	163
	>5000	140	75	111
Total Sediment	>30	339	34	1 <i>7,</i> 780*
(kg/s)	>100	695	92	15,807*
	>500	2451	388	12 , 51 <i>7</i> *
	>1000	4328	1003	11,223*
	>2500	9447	2500	9,666*
	>5000	16,006	4481	8,282*
Bedload	>30	32	22	6.4*
Proportion (%)	>100	21	11	4.1*
	>500	11	3.6	2.3*
	>1000	9	3.2	2.1*
	>2500	5.3	1.9	1.6*
	>5000	4.4	1.2	1.3*

Conclusions


- Bedload predictions are highly sensitive to river slope and particle size.
- Both parameters are challenging to derive/calculate Further development is needed.
- Bedload both inter- and intra-basin distributions are highly heterogenous and can deviate considerably from suspended flux trends in high altitudes and latitudes.
- Proportion of bedload in total sediment flux decrease dramatically from headwater to coastal river reaches but with considerable variability between basins and along river routes.
- A total global load of 17.8 Gt/y to global oceans is predicted, 14.8 Gt/y as washload, 1.1 Gt/y as bedload, and 2.6 Gt/y as suspended bed material. The largest 25 rivers are predicted to transport more than half of the total sediment flux to global oceans.

Thank You

Preprint available for a Water Resources Research manuscript (under review)

Sagy Cohen

Sagy.Cohen@ua.edu

https://sdml.ua.edu

https://www.essoar.org/doi/10.1002/essoar.10508703.1