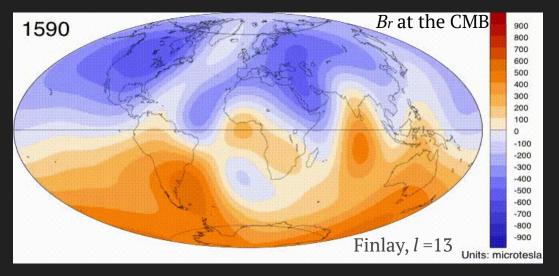


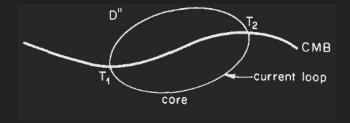
A laboratory study of turbulent magnetoconvection:

Could thermoelectricity induce asymmetry in geomagnetic secular variation?

Yufan Xu¹, Susanne Horn^{1,2}, Jonathan Aurnou¹



The Geodynamo


- Time-dependent secular variation
- Inclination anomaly from paleomagnetic data
 - Asymmetry during field reversals
 - Hemispheric asymmetry
 - Debates
- **♦** Source of asymmetry
 - Deeper core flows? Or near-CMB dynamics?
 - > Thermoelectricity

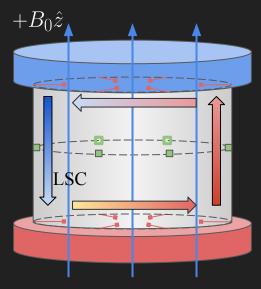
Conundrum of Thermoelectricity at CMB

$$\Phi_{TE} \sim \widetilde{S}\Delta T_p$$

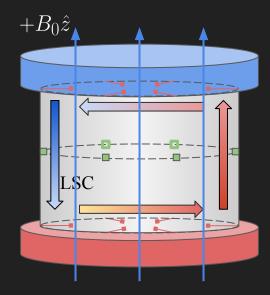
- All focused on **toroidal field generation**. Too small to explain polarity asymmetry.
 - \triangleright Elsasser (1939): Thermoelectricity (TE) \rightarrow geomagnetism
 - > Runcorn (1954), Merrill et al. (1979) (1990): TE from CMB
 - ➤ TE generates Mercury's dynamo? (Stevenson 1987, *EPSL*; Giampieri & Balogh 2002, *P&SS*)
- ❖ To characterize the system: laboratory experiment!

Merrill et al. 1990

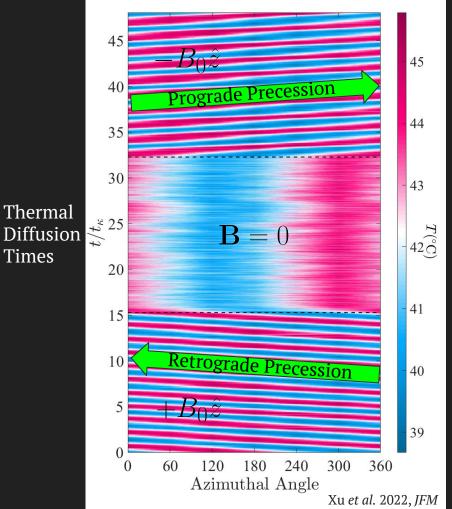
Experiment Setup



Working fluid: liquid gallium (Pr = 0.027, Rm < 0.015)

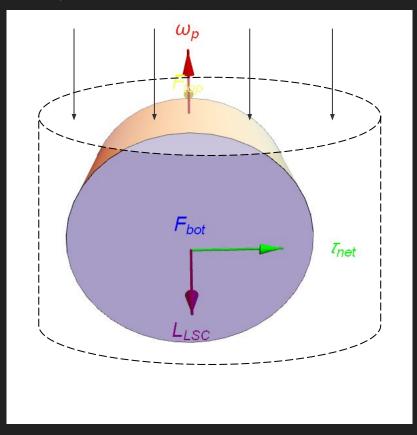

Experiment Setup

Working fluid: liquid gallium (Pr = 0.027, Rm < 0.015)


- ❖ Thermal signals → fluid motions in liquid metal.
- Classical turbulent Rayleigh-Bénard convection setup with a vertical B field
- **♦** Large Scale Circulation (LSC) \rightarrow self-sustaining ∇ T at the top/bottom boundaries.
- B field should inhibits convective fluid motions (low Rm).

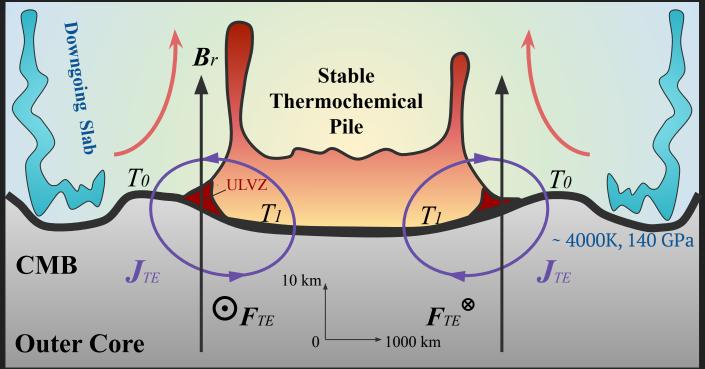
Experiment Results

- Slow magneto-precession (MP) mode
- Sensitive to the polarity of the magnetic field *
- No significant change in heat transfer


Midplane Sidewall Temperature Contour

Times

Analytical Model for TEMC


Thermoelectric precession angular frequency:

$$oldsymbol{\omega}_{MP} = rac{ au_{net}}{L_{LSC}} \left(-\hat{e}_b
ight) \ \omega_{MP} = rac{\pi^{1/2}}{\Gamma^{3/2}} rac{\sigma_0 X_0 B \mathcal{T}}{2
ho U_{ff} H} \left(-\hat{e}_b
ight)$$

- Precession reverses its direction if B is flipped
- ❖ Agree with experimental data <16%

Thermoelectricity at CMB?

- TE currents with B field can exert torques on core fluid near CMB mega-ULVZs
- Potential new dynamic mechanism for core-mantle coupling.
- Induction equation: changes in velocity field that can cause polarity asymmetry in geomagnetic fields.
- Current uncertainty: CMB properties

Xu et al. 2022, JFM. Adapted from Garnero, McNamara & Shim (2016) and Deschamps, Rogister & Tackley (2018)

Looking for Geophysical Evidence and Collaborations

Mantle dynamicists:

➤ Thermal gradient along CMB?

Mineral Physicists:

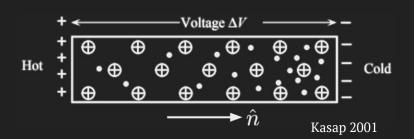
Seebeck coefficients of CMB materials? Possibly can be studied by first-principle simulations.

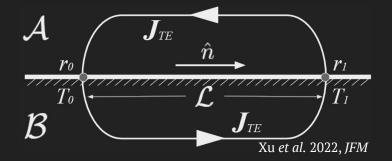
Theorists/experimentalists:

ightharpoonup Controlled ∇ T TEMC experiments including effects of rotation & stratification.

Geophysicists:

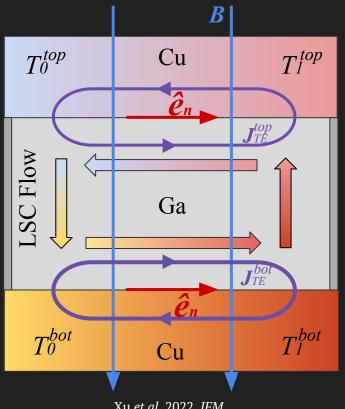
Observations of polarity asymmetry in paleomagnetic secular variations near mega-ULVZs.


Xu et al. 2022, JFM


Backup

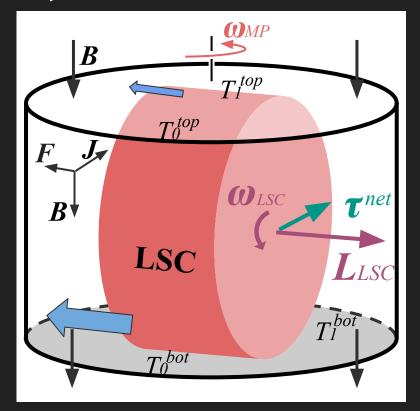
Thermoelectric Effects

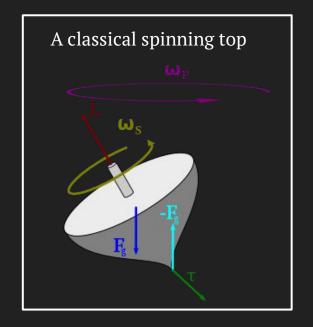
lacktriangle The Seebeck Effect : Temperature gradient ightharpoons Electric potential $\Phi_{TE} \sim \widetilde{S} \Delta T_p$



TE currents generated from an imposed temperature gradient with a perpendicular B field \rightarrow Lorentz forces F_I on liquid metal (Shercliff 1979).

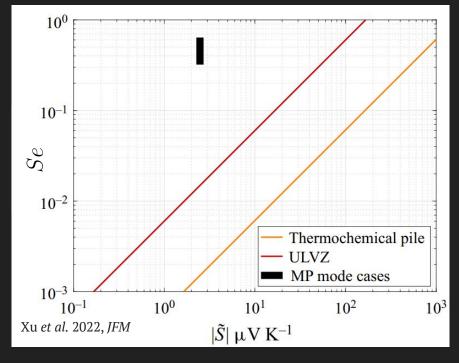
Analytical Model for TEMC




- LSC creates δT_{\perp} at top and bottom boundaries
- δT_{\perp} generates TE currents J_{TE} at the interfaces
- TE currents J_{TE} and the vertical B field generate Lorentz Forces $F_L = J_{TF} \times B$
- The net F_{I} generates torques perpendicular to the moment of inertia of the LSC.
- TE magneto-precessional mode!

14

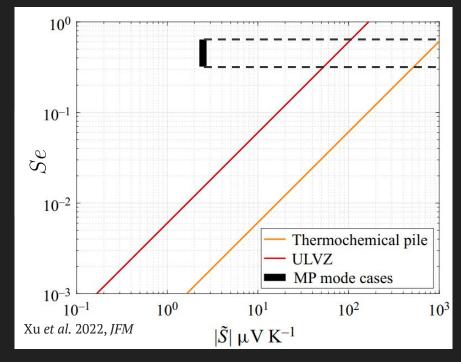
Analytical Model for TEMC



Xu et al. 2022, JFM

Seebeck Number Estimates

Seebeck Number, *Se*, measures significance of the TE dynamics:

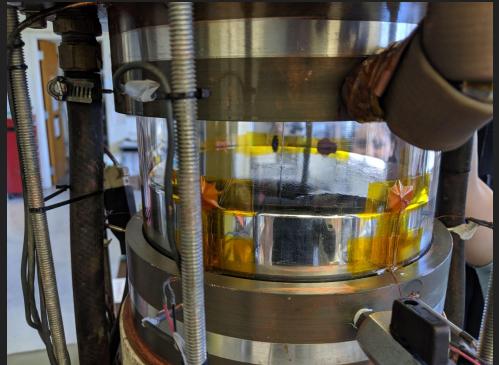

$$Se = \frac{|\widetilde{S}|\Delta T_p}{U_C B_r L} = \frac{\text{TE Potential}}{\text{Motion Induced Potential}}$$

- ΔT_p : lateral temperature difference ~ 300K
- ❖ *Uc*: Outer core flow speed near CMB ~ 0.1mm/s
- ❖ Br: Radial geomagnetic field ~1mT
- Length of thermochemical pile ~ 5000km
- ❖ Length of ULVZs ~ 500km

Net Seebeck Coefficient, \widetilde{S}

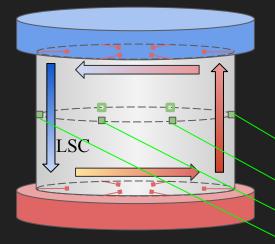
Seebeck Number Estimates

Net Seebeck Coefficient, \widetilde{S}


- TEMC flows are at $Se \gtrsim \mathcal{O}(10^{-1})$
- ❖ Thermochemical pile or ULVZ:

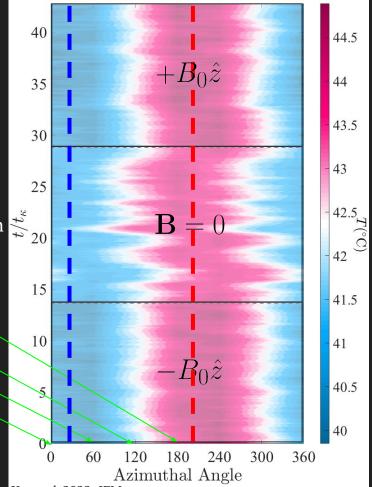
$$|\widetilde{S}| \gtrsim \mathcal{O}(10^2) - \mathcal{O}(10^3)$$

- Mantle dynamicists:
 - Thermal gradient along CMB?
- Mineral Physicists:
 - Seebeck coefficients of CMB materials? Possibly can be studied by first-principle simulations.
- **♦** Theorists/experimentalists:
 - ➤ Controlled ∇T TEMC experiments including effects of rotation & stratification.



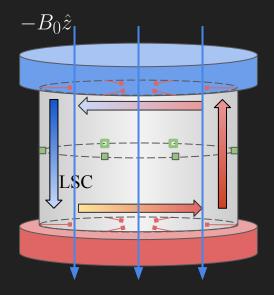
Study 1: Electrically-<u>insulated</u>
 Boundary: Teflon-coated Aluminum

$$\mathbf{B} = 0$$



Thermal Diffusion Times

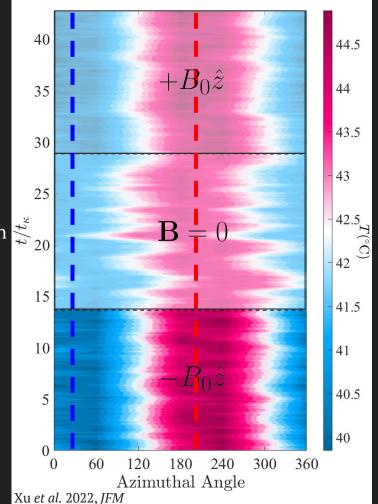
$$Ra = \frac{\text{Buoyancy}}{\text{Diffusion}} = 1.62 \times 10^6$$


$$N = \frac{\text{Lorentz}}{\text{Inertia}} = 0$$

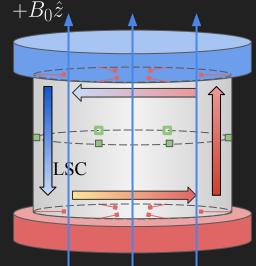
Midplane Sidewall Temperature Contour

Xu et al. 2022, JFM

• Study 1: Electrically-<u>insulated</u>
Boundary: Teflon-coated Aluminum

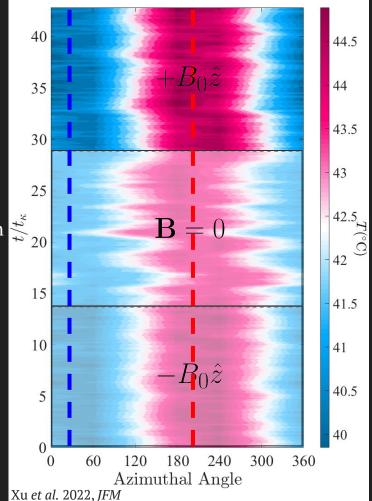


$$Ra = \frac{\text{Buoyancy}}{\text{Diffusion}} = 1.62 \times 10^6$$

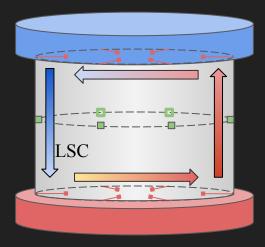

$$N = \frac{\text{Lorentz}}{\text{Inertia}} = 0.29$$

Thermal Diffusion Times

Midplane Sidewall Temperature Contour

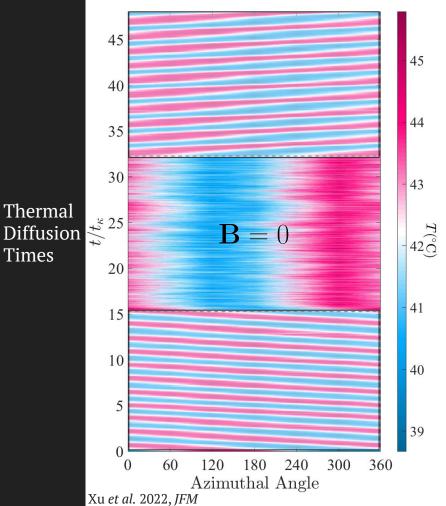

• Study 1: Electrically-<u>insulated</u>
Boundary: Teflon-coated Aluminum

Thermal Diffusion Times

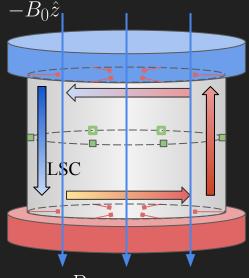

- LSC persists in magnetoconvection
- Agree with our expectation from the standard Low-*Rm* approximation (Cioni, 2000; Zürner *et. al*, 2020)
- MC's characteristic frequency agrees with prediction (Vogt et. al, 2018)

Midplane Sidewall Temperature Contour

Study 2: Electrically-conducting Boundary: Copper

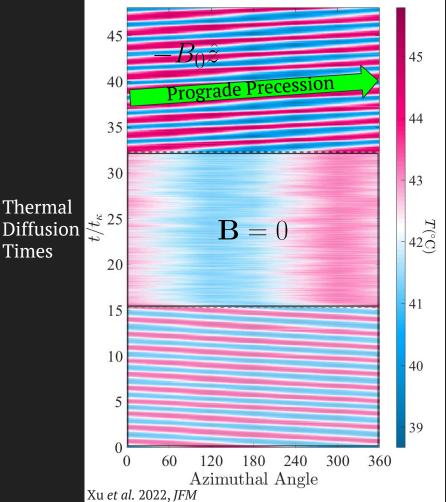

$$\mathbf{B} = 0$$

$$Ra = \frac{\text{Buoyancy}}{\text{Diffusion}} = 1.80 \times 10^6$$

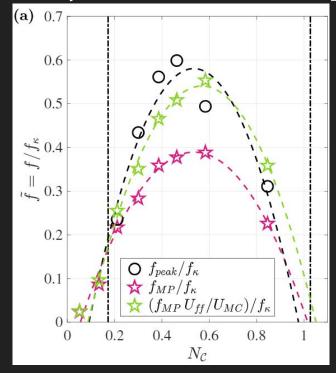

$$N = \frac{\text{Lorentz}}{\text{Inertia}} = 0$$

Midplane Sidewall Temperature Contour

Times


Study 2: Electrically-conducting Boundary: Copper

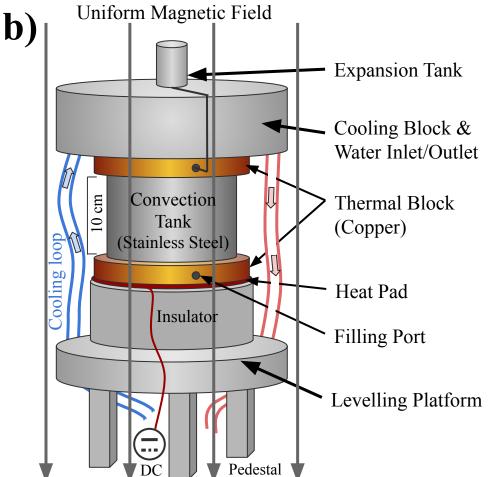
$$Ra = \frac{\text{Buoyancy}}{\text{Diffusion}} = 1.83 \times 10^6$$


$$N = \frac{\text{Lorentz}}{\text{Inertia}} = 0.31$$

Midplane Sidewall Temperature Contour

Times

Analytical Model vs. Experimental Data

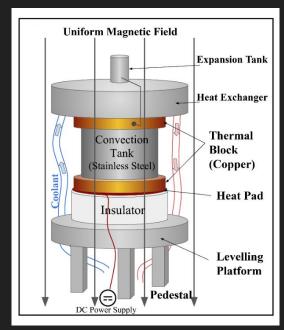


Lorentz/Inertia

Xu et al. 2022, JFM

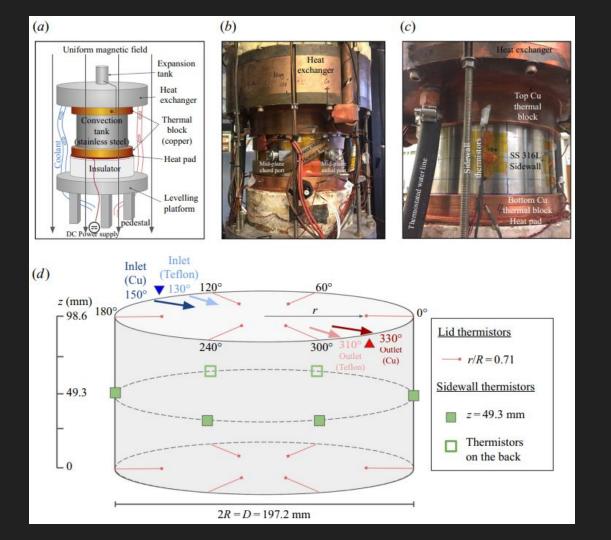
- Fixed Ra (Buoyancy/ Diffusion), varying N_C (Lorentz/Inertia).
- ♦ <16% difference between the model using U_{MC} (Zürner *et. al*, 2020) and the experiments.
- ♦ When Lorentz force becomes comparable with the inertia $(N_c \ge 1)$ → multi-cellular flow.

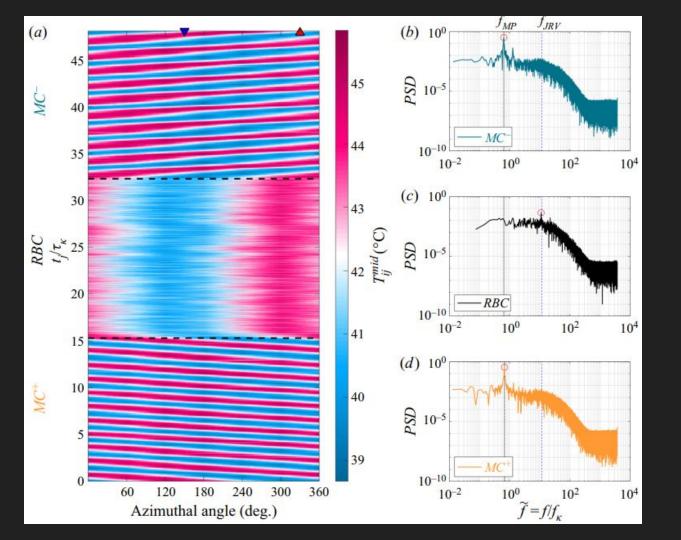
Low-Rm (Quasistatic) Approximation

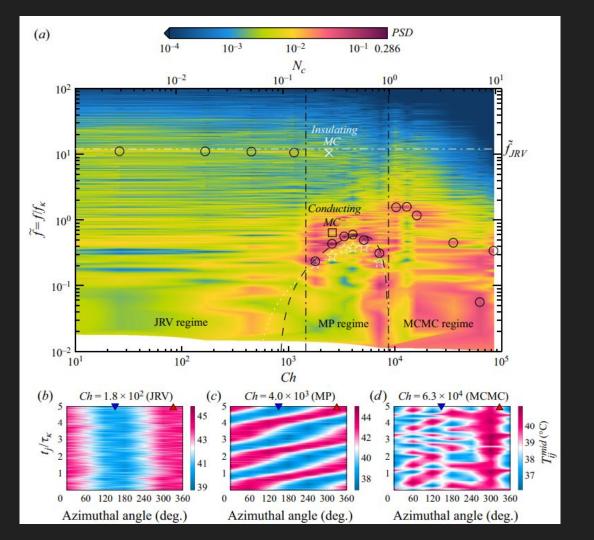

In this limit, the induced magnetic field by fluid motion is negligible. The resulting Lorentz force is:

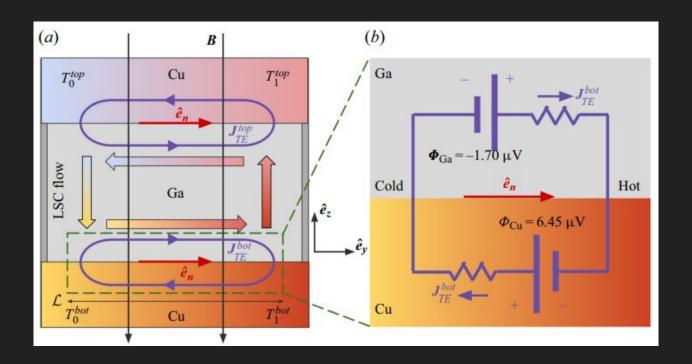
$$\mathbf{F} = \mathbf{J} \times \mathbf{B}_0 \sim -\sigma \mathbf{u}_{\perp} B_0^2$$

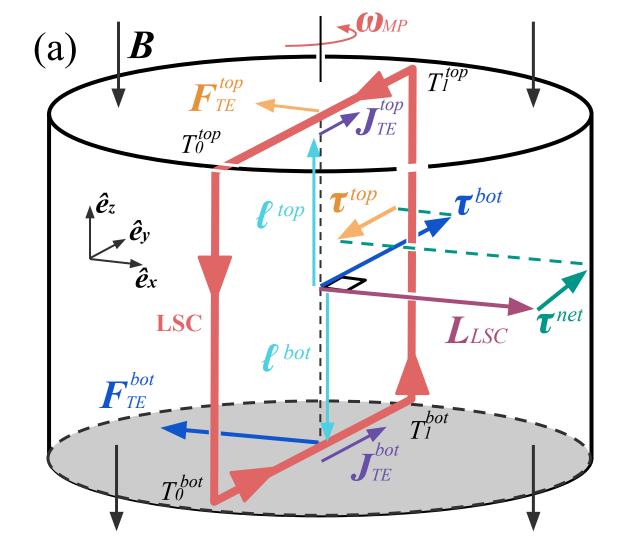
Expectation:


- The Lorentz forces act as the magnetic drag.
- No traveling/oscillatory mode.
- Vectical polarity of the applied field should not matter.


Working fluid: liquid gallium $Rm \lesssim 0.015$




RoMag, UCLA


Number names	Symbol	Definition	Equivalence	Current study
Magnetic Reynolds	Rm	$\frac{U_{f\!f}H}{\eta}$	RePm	$\lesssim 10^{-2}$
Magnetic Prandtl	Pm	$\frac{\nu}{\eta}$	_	1.7×10^{-6}
Prandtl	Pr	$\frac{v}{\kappa}$	-	2.7×10^{-2}
Rayleigh	Ra	$\frac{\alpha g \Delta T H^3}{\nu \kappa}$	_	\sim 2 × 10 ⁶
Chandrasekhar	Ch	$\frac{\sigma B^2 H^2}{\rho \nu}$	-	$[0, 8.4 \times 10^4]$
Seebeck	Se	$\frac{ \tilde{S} \Delta T/H}{U_{f\!f}B}$	_	$\sim [10^{-2}, 1]$
Aspect ratio	Γ	$\frac{D}{H}$	_	2.0
Reynolds	Re	$\frac{U_{ff}H}{v}$	$\sqrt{\frac{Ra}{Pr}}$	$\lesssim 8.7\times 10^3$
Péclet	Pe	$\frac{U_{ff}H}{\kappa}$	\sqrt{RaPr}	$\lesssim 2.2\times 10^2$
Convective interaction	N_C	$rac{\sigma B^2 H}{ ho U_{f\!f}}$	$\sqrt{\frac{Ch^2Pr}{Ra}} = \frac{Ch}{Re}$	≲ 10
Thermoelectric interaction	N _{TE}	$\frac{\sigma B \tilde{S} \Delta T}{\rho U_{f\!f}^2}$	$SeN_{\mathcal{C}}$	$\lesssim 10$

Symbols	Description	Value
σ_0	Cu-Ga effective electric conductivity, (2.5)	$3.63 \times 10^6 \mathrm{S m^{-1}}$
B	magnetic field intensity	120 gauss
L	Horizontal length scale of thermoelectric current loops, $\approx \Gamma H$	197.2 mm
X_0	Cu-Ga Seebeck prefactor, (6.6)	$-7.89 \times 10^{-9} \mathrm{V}\mathrm{K}^{-2}$
ρ	Liquid gallium density	$6.08 \times 10^3 \mathrm{kg}\mathrm{m}^{-3}$
R^*	Effective radius of the LSC, (6.1)	0.08 m
$U_{f\!f}$	Free-fall velocity, (2.10)	$0.03 \mathrm{ms^{-1}}$
$rac{U_{f\!f}}{T}$	Mean fluid temperature, (3.5)	42.50 °C
ΔT	Vertical temperature difference across the fluid, (3.3)	7.03 K
T^{bot}	Bottom interface mean temperature	319.23 K
δT^{bot}	Bottom interface mean temperature difference, (5.2)	3.44 K
T^{top}	Top interface mean temperature	312.07 K
δT^{top}	Top interface mean temperature difference, (5.2)	2.24 K
\mathcal{T}	$(T^{bot}\delta T^{bot} - \delta T^{top}\delta T^{top})$	$399.11 \mathrm{K}^2$

Euler's equation:

$$m{ au}^{net} = rac{\mathrm{d}m{L}_{LSC}}{\mathrm{d}t} = I rac{\mathrm{d}m{\omega}}{\mathrm{d}t} + m{\omega} imes m{L}_{LSC}$$
 $m{\omega} = \omega_{LSC} \hat{e}_x + m{\omega}_{MP}$

Thermoelectric net torque:

$$\boldsymbol{\tau}^{net} = \frac{\sigma_0 V_{LSC} X_0 B \left(T^{bot} \delta T^{bot} - T^{top} \delta T^{top} \right)}{4\Gamma} \left(\hat{e}_x \times \hat{e}_b \right)$$

❖ Thermoelectric precession angular frequency:

$$\boldsymbol{\omega}_{MP} = \frac{\tau_{net}}{L_{LSC}} (-\hat{e}_b)$$

$$\boldsymbol{\omega}_{MP} = \frac{\sigma_0 X_0 B}{2\rho U_{ff} \Gamma R^*} \left(T^{bot} \delta T^{bot} - T^{top} \delta T^{top} \right) (-\hat{e}_b) = \frac{\pi^{1/2}}{\Gamma^{3/2}} \frac{\sigma_0 X_0 B \mathcal{T}}{2\rho U_{ff} H} (-\hat{e}_b)$$

Conclusion

- Thermoelectric effects in turbulent liquid metal magnetoconvection experiments
- ❖ Novel thermoelectric precession mode
- ◆ TE currents with B field can exert torques on core fluid near CMB →
 New potential mechanism for core-mantle coupling

Xu et al. 2022, JFM

