

Analysis of Turbulence Energy Transfer at an Interplanetary Shock Observed by MMS

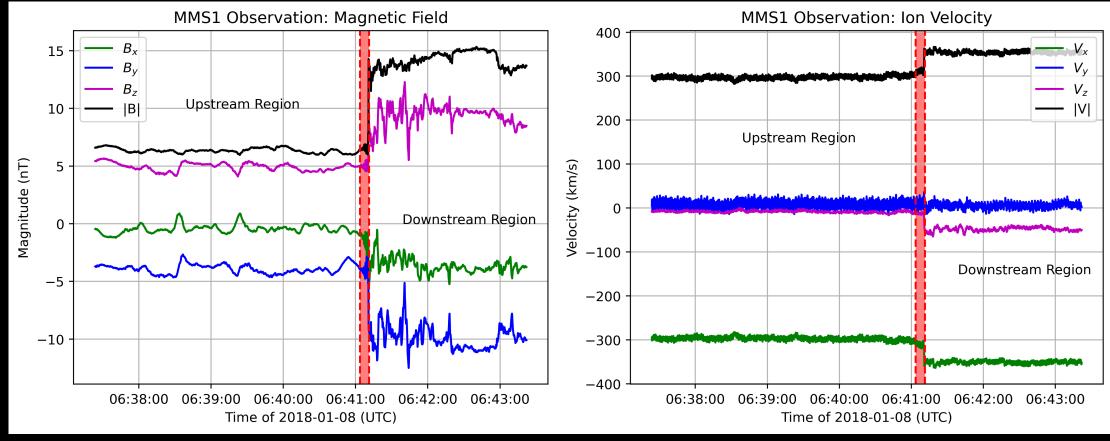
EGU General Assembly 2022

Nawin Ngampoopun (1,2); David J Ruffolo (1); Riddhi Bandyopadhyay (3); William H Matthaeus (4);

(1) Department of Physics, Faculty of Science, Mahidol University, Thailand; (2) Mullard Space Science Laboratory, University College London, UK; (3) Department of Astrophysical Sciences, Princeton University, USA; (4) Department of Physics and Astronomy and Bartol Research Institute, University of Delaware, USA

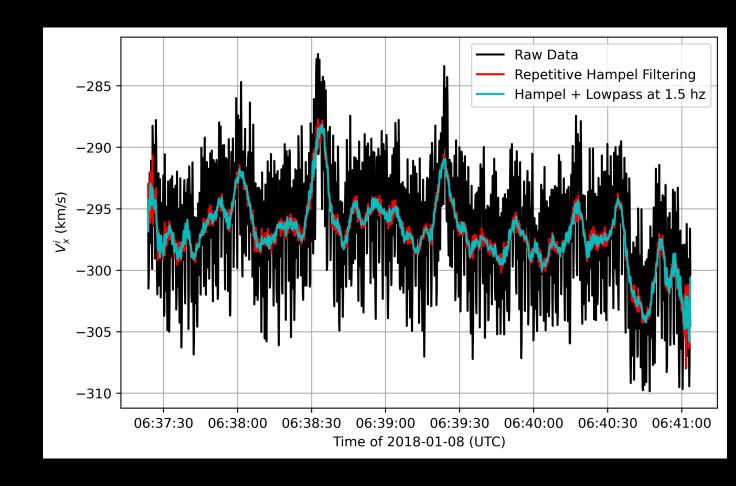
Introduction

On 2018/01/08 MMS observed an interplanetary shock driven by a corotating interaction region (CIR) on 06.41 UTC



Cleaning up FPI measurements of Solar Wind

- Issues of FPI (Fast plasma investigator): It is not designed for solar wind measurement
 - Periodic noise corresponds to spin tone period: ≈ 19.67 s and its harmonics
 - Large amplitude fluctuations
- Apply Hampel Filtering-Based Technique to remove artificial noise
 - Based on Bandyopadhyay et al. 2018



Energy Transfer Rate (ϵ) calculation

- Assuming Taylor's frozen in condition
- Inertial Scale: Kolmogorov-Yaglom Law (Third-Order Law)

$$Y^{\pm}(\tau) = -\frac{4}{3} \epsilon^{\pm} \langle V_{SW} \rangle \tau$$

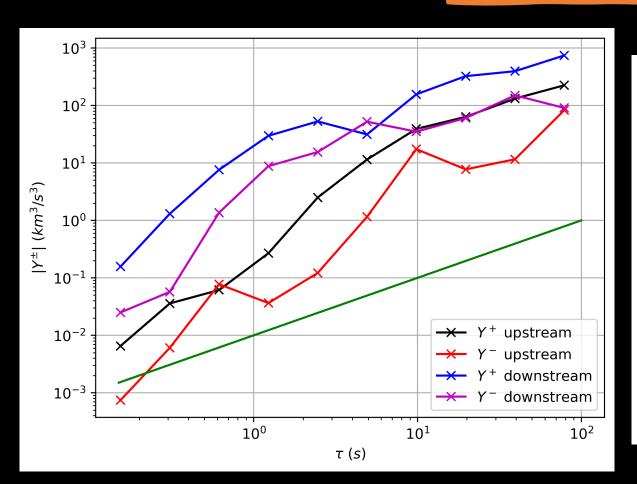
$$Y^{\pm}(\tau) = \left\langle \left| \Delta \mathbf{Z}^{\pm}(\tau; t) \right|^{2} \Delta Z_{R}^{\mp}(\tau; t) \right\rangle, \qquad \mathbf{Z}^{\pm} = \boldsymbol{v}_{i} \pm \boldsymbol{b}$$

• Energy containing scale: Von Kármán Analysis

$$\epsilon^{\pm} = -\frac{d(Z^{\pm})^2}{dt} = \alpha_{\pm} \frac{(Z^{\pm})^2 Z^{\mp}}{L_{+}}$$

• Mean energy transfer rate: $\epsilon = \frac{\epsilon^+ + \epsilon^-}{2}$

Energy Transfer Rate: Inertial scale



$\epsilon \; (\mathrm{kJ} \; \mathrm{kg}^{-1} \; \mathrm{s}^{-1})$		
	Upstream	Downstream
MMS1	4.9 ± 0.3	12 ± 1
MMS2	4.7 ± 0.3	14 ± 1
MMS3	5.0 ± 0.3	13.7 ± 0.9
MMS4	4.6 ± 0.3	12 ± 1

Table 1. Turbulence energy transfer rate in inertial scale at upstream and downstream region of a shock. The values estimated from third-order law

Energy Transfer Rate: Energy containing scale

- Using Von Kármán Howarth decay law
- $\alpha_{+} \cong \alpha_{-} = 0.055$, due to high Reynolds number

$\epsilon \; (\mathrm{kJ} \; \mathrm{kg}^{-1} \; \mathrm{s}^{-1})$		
	Upstream	Downstream
MMS1	2.8 ± 0.5	20 ± 1
MMS2	3.0 ± 0.6	20 ± 3
MMS3	2.9 ± 0.6	21 ± 3
MMS4	2.8 ± 0.5	19 ± 3

Table 2. Turbulence energy transfer rate at upstream and downstream region of a shock. The values estimated from Von Kármán analysis

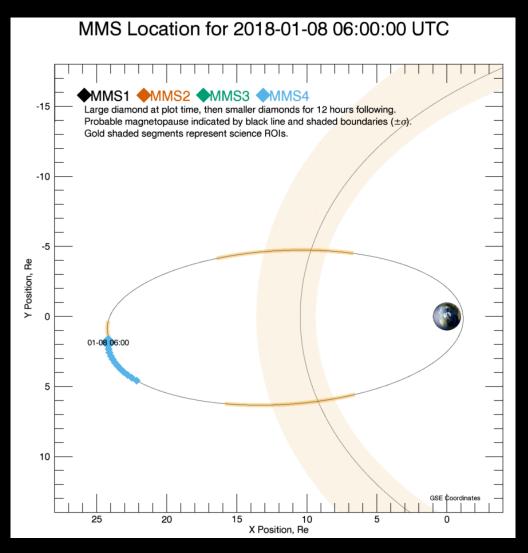
Discussion Conclusion

- In this work, we analyzed the energy dissipation rate of turbulence in the regions upstream and downstream of the interplanetary shock (IP) observed by the MMS on 8 January 2018.
- The turbulent energy transfer rate is calculated from both the third-order law (for the inertial range) and von Karman decay law (for the energycontaining range)
- The analysis shows that the downstream region has a higher transfer rate, and the turbulence has developed to smaller scales compared to the upstream region.
- Potentially further research should examine different IP shocks with a longer duration of burst mode data from MMS or other missions.

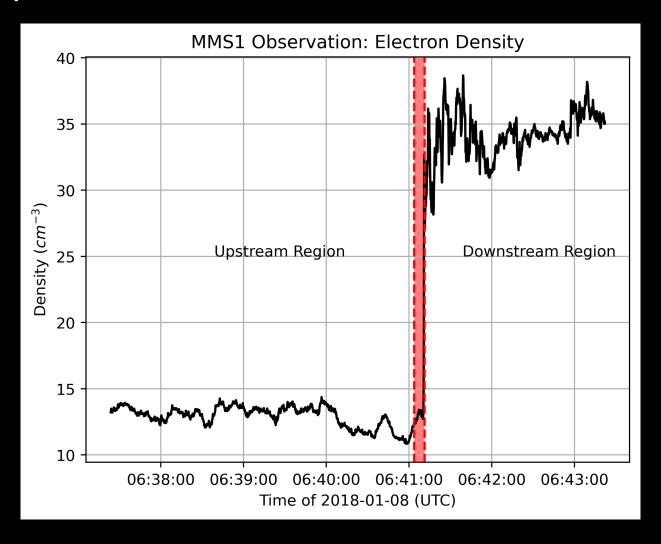
Appendix

*Not encouraged to take photo or share results after this slide

MMS position during the IP shock



Density profile at the IP shock

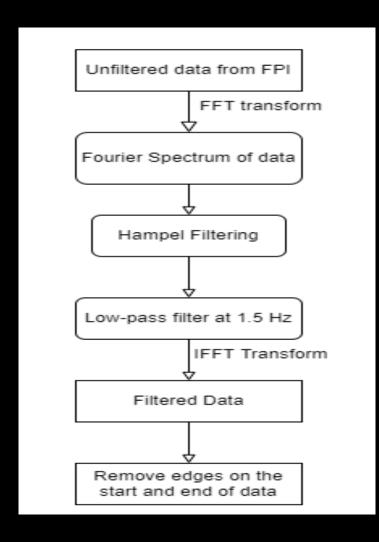


SW angle

- Angle between Solar wind velocity and X_GSE (Radial): $\theta_x = \frac{V_{i,x}}{|V_i|}$
- MMS1
 - θ_{x} upsteam = 177.08 deg, θ_{x} downstream = 172.03 deg
- MMS2
 - θ_x upstream = 177.16 deg, θ_x downstream = 172.04 deg
- MMS3
 - θ_x upstream = 177.26 deg, θ_x downstream = 172.11 deg
- MMS4
 - θ_x upstream = 177.28 deg, θ_x downstream = 172.09 deg

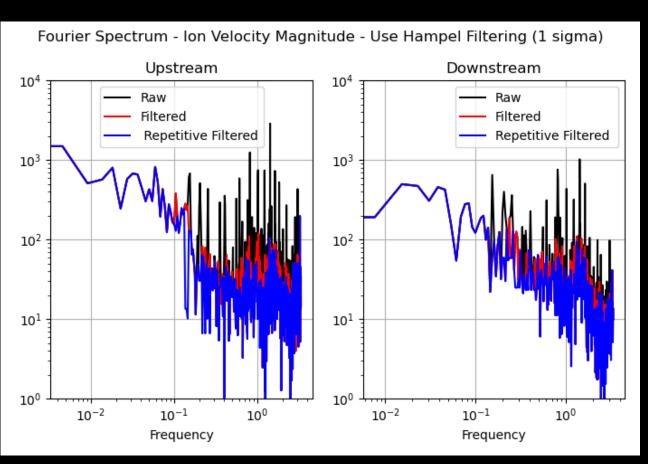
Cleaning up ion velocity data

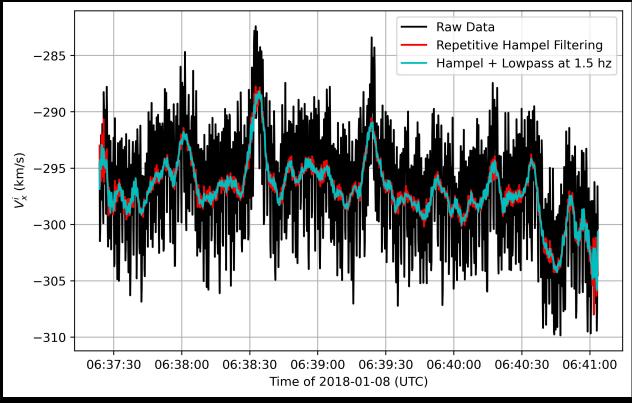
$$y_{i} = \begin{cases} x_{i} & \text{if } |x_{i} - m_{i}| \leq n_{\sigma} S_{i}, \\ m_{i} & \text{if } |x_{i} - m_{i}| > n_{\sigma} S_{i}, \end{cases}$$



- Apply Hampel Filtering Based Technique (Bandyopadhyay et al. 2018)
 - Using Moving Window Length = 20 s
 - n-sigma = 1
 - Apply Hampel filtering two times in same data set
 - Low pass filter at 1.5 Hz
 - Remove 40 data points at edge
- Based on Bandyopadhyay et al. 2018

Effectiveness of Hampel Filtering

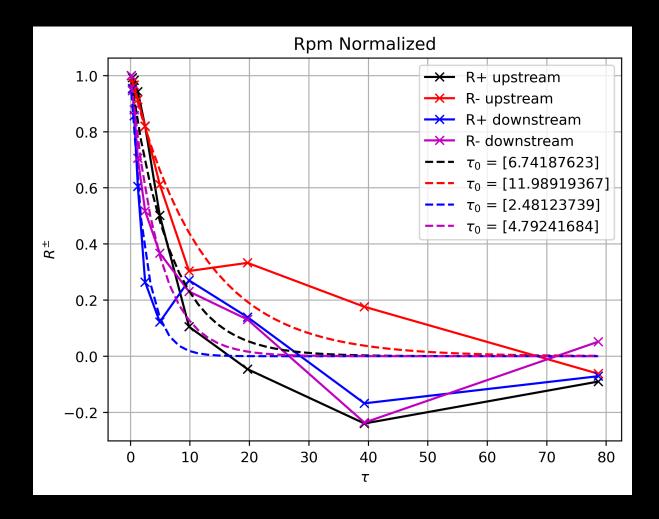




Elsasser Increment Calculation

- Find $\Delta Z^{\pm} = Z^{\pm}(t+\tau) Z^{\pm}(t)$
- $Z^{\pm}=v_i\pm b$; $v_i=V_i-\langle V_i
 angle$, $b=B-\langle B
 angle$ (in Alfven unit)
- τ choice: $\tau = 2^n * T_{spin}/32$
 - n = (-2, -1, ..., 6, 7)
 - T_{spin} (spin period of S/C) = 19.67
 - Reduced more spin tone effect.

Correlation Function



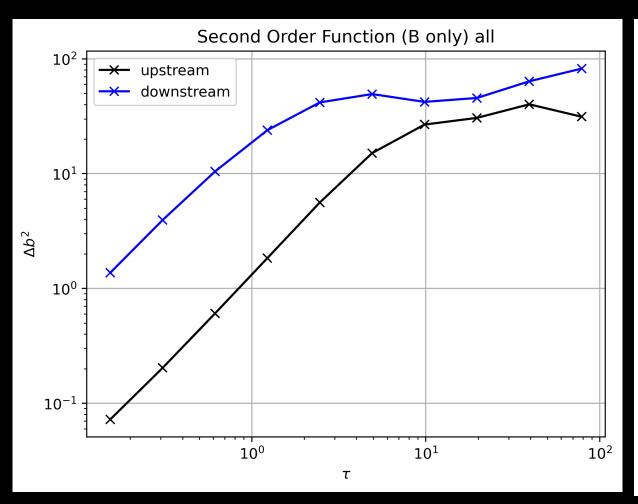
$$R^{\pm}(\tau) = \langle \mathbf{Z}^{\pm}(t) \cdot \mathbf{Z}^{\pm}(t+\tau) \rangle_T.$$

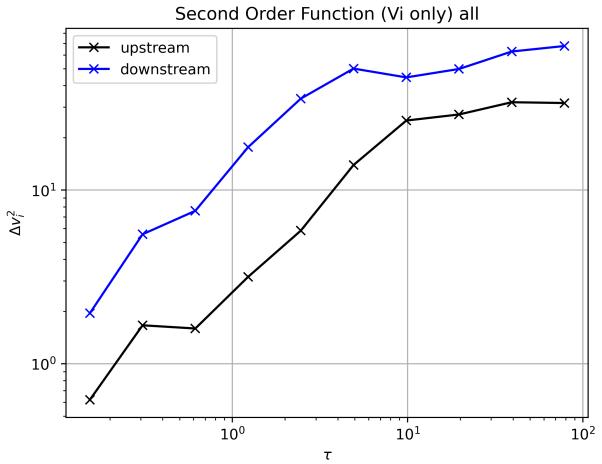
$$R^{\pm}(\tau^{\pm}) = \frac{1}{e},$$

$$L_{\pm} = |\langle V \rangle| \tau^{\pm},$$

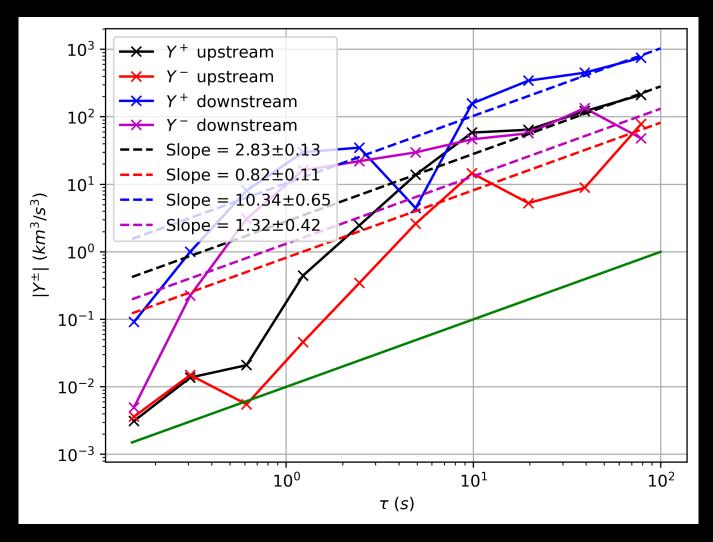
- Plot of normalized correlation function with fitted 1/e function
- Correlation scale τ_0
 - From 1/e method
 - τ_0 range from 2 12 second
 - Due to availability of data, maybe correlation scale is shorter than it should be for pristine SW.

Second Order Function: B and V_i



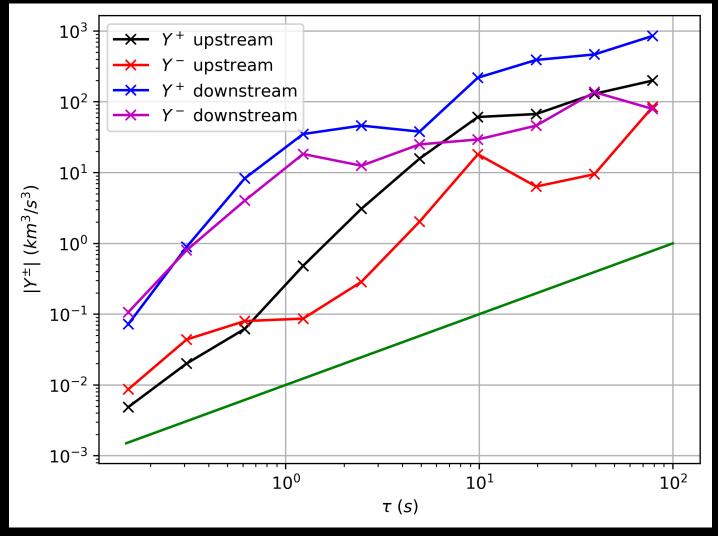


MMS1 – Third Order Law



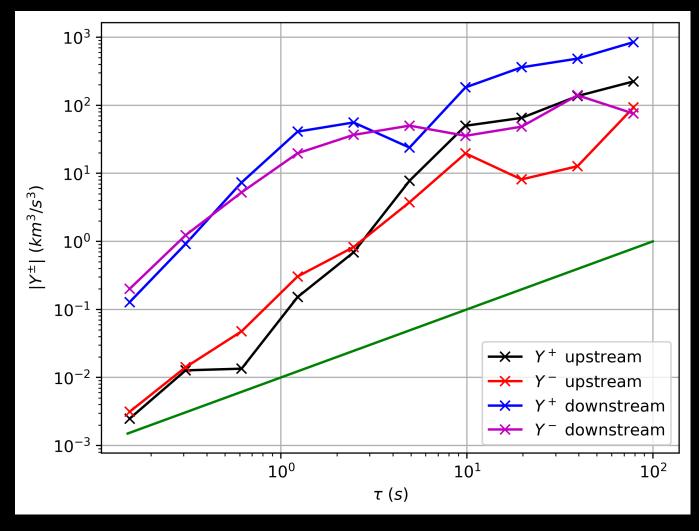
- ϵ^{+} upstream = 7.5 \pm 0.2 $kJ kg^{-1} s^{-1}$
- ϵ^{-} upstream = 2.2 \pm 0.3 $kJ kg^{-1} s^{-1}$
- ϵ^+ downstream = $21 \pm 1 \, kJ \, kg^{-1} \, s^{-1}$
- ϵ^{-} downstream = 3.9 \pm 0.9 kJ $kg^{-1} s^{-1}$

MMS2 - Third Order Law



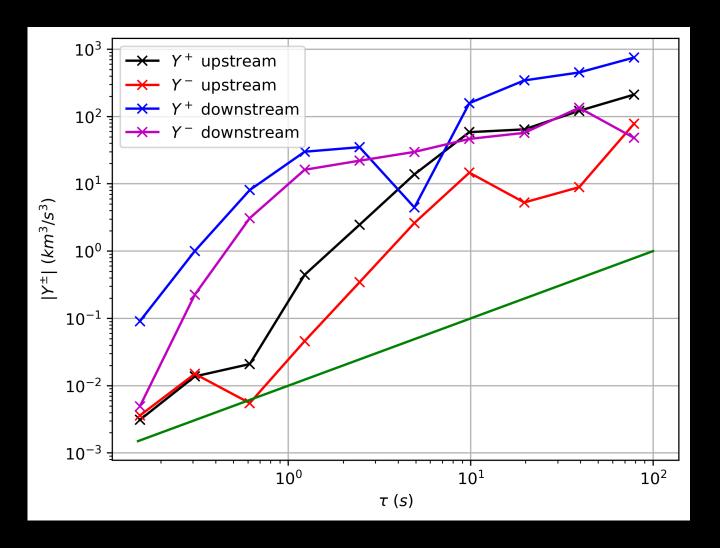
- ϵ^+ upstream = 7.0 \pm 0.4 $kJ kg^{-1} s^{-1}$
- ϵ^{-} upstream = 2.3 \pm 0.3 $kJ kg^{-1} s^{-1}$
- ϵ^+ downstream = 25 \pm 2 kJ kg^{-1} s^{-1}
- ϵ^{-} downstream = 3.3 \pm 0.7 $kJ kg^{-1} s^{-1}$

MMS3 - Third Order Law



- ϵ^{+} upstream = 7.6 \pm 0.3 $kJ kg^{-1} s^{-1}$
- ϵ^{-} upstream = 2.5 \pm 0.3 $kJ kg^{-1} s^{-1}$
- ϵ^+ downstream = 24 \pm 1 kJ kg^{-1} s^{-1}
- ϵ^{-} downstream = 3.4 \pm 0.8 $kJ kg^{-1} s^{-1}$

MMS4 - Third Order Law



- ϵ^{+} upstream = 7.1 \pm 0.3 $kJ kg^{-1} s^{-1}$
- ϵ^{-} upstream = 2.1 \pm 0.2 $kJ kg^{-1} s^{-1}$
- ϵ^+ downstream = 22 \pm 1 kJ kg^{-1} s^{-1}
- ϵ^{-} downstream = 2.8 \pm 0.9 $kJ kg^{-1} s^{-1}$

Von Karman Analysis – MMS1 & 2

MMS3

- ϵ^{+} upstream =4.6 \pm 0.9 kJ kg^{-1} s^{-1}
- ϵ^{-} upstream = 1.1 \pm 0.1 kJ $kg^{-1} s^{-1}$
- ϵ^+ downstream = $29 \pm 5 \, kJ \, kg^{-1} \, s^{-1}$
- ϵ^- downstream = $10 \pm 1 \, kJ \, kg^{-1} \, s^{-1}$

MMS4

- ϵ^{+} upstream = 4.6 \pm 0.9 kJ $kg^{-1} s^{-1}$
- ϵ^- upstream = 1.3 \pm 0.3 kJ $kg^{-1} s^{-1}$
- ϵ^+ downstream = 31 \pm 5 kJ kg^{-1} s^{-1}
- ϵ^{-} downstream = 8.8 \pm 0.2 $kJ kg^{-1} s^{-1}$

Von Karman Analysis – MMS3 & 4

MMS3

- ϵ^{+} upstream = 4.5 \pm 0.9 kJ $kg^{-1} s^{-1}$
- ϵ^{-} upstream =1.2 \pm 0.2 kJ $kg^{-1} s^{-1}$
- ϵ^+ downstream =32 \pm 5 kJ kg^{-1} s^{-1}
- ϵ^- downstream =10 \pm 2 kJ kg^{-1} s^{-1}

MMS4

- ϵ^{+} upstream = 4.4 \pm 0.8 kJ kg^{-1} s^{-1}
- ϵ^{-} upstream = 1.2 \pm 0.2 kJ $kg^{-1} s^{-1}$
- ϵ^+ downstream = 29 \pm 4 kJ kg^{-1} s^{-1}
- ϵ^- downstream = 9.8 \pm 2 kJ kg^{-1} s^{-1}