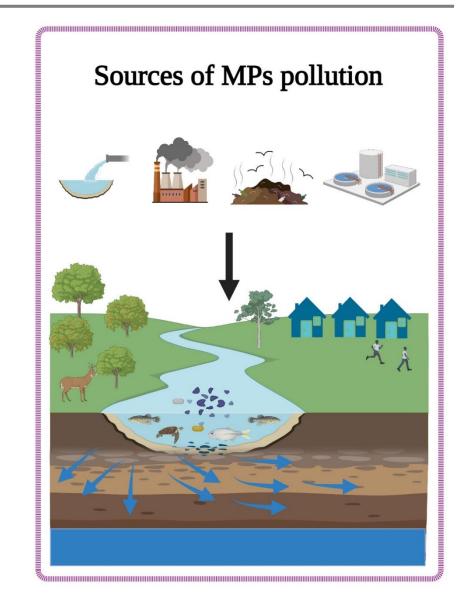


Transport of dynamically fragmented polystyrene (PS) microplastics through saturated porous media

Presentation by

Ahmad Ameen^{1,3}, Julia Derx^{1,3}, Stefan Jakwerth^{2,3}, Gerhard Lindner^{1,2,3}, Alexander K. T. Kirschner^{2,3}, Alfred Paul Blaschke^{1,3}, Margaret E. Stevenson^{1,3}

- 1. INSTITUTE OF HYDRAULIC ENGINEERING AND WATER RESOURCES MANAGEMENT, TU WIEN, AUSTRIA.
- 2. INSTITUTE FOR HYGIENE AND APPLIED IMMUNOLOGY, MEDICAL UNIVERSITY OF VIENNA, AUSTRIA.
- 3. INTERUNIVERSITY COOPERATION CENTRE (ICC) WATER AND HEALTH, VIENNA, AUSTRIA.



What are microplastics (MPs)?

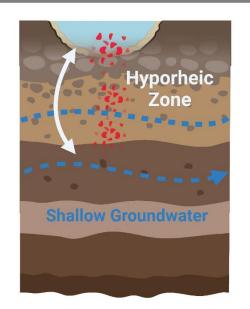
• As per European Commission, fragmented plastics in a size range of **0.1 μm to 5 mm** (Mendoza and Balcer 2019)

Potential threats to groundwater system?

- For groundwater micron-sized MPs are more relevant (Ameen et., al. 2020)
- Less than 20% of global studies considered MPs size below
 20 μm, which are more relevant for groundwater studies.
- Mobile pore scale MPs in the hyporheic zone can be transferred into the aquifer.
- MPs in shallow groundwater can be a potential threat for drinking water (i.e. riverbank filtration) (Frei et., al. 2019)

Motivation

Understand the transport behaviour of MPs in different porous media;


- 1. Effect of MPs shape
- 2. Effect of porous media
- 3. A new method of analysing MPs

Methodology

Dynamic fragmentation of microspheres (10 & 20 µm)

Identification by Solid-phase Cytometry

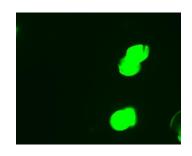
Stevenson, et al., 2014

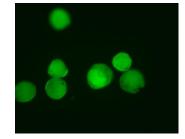
Process of dynamic fragmentation

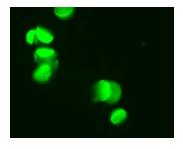
Preparation

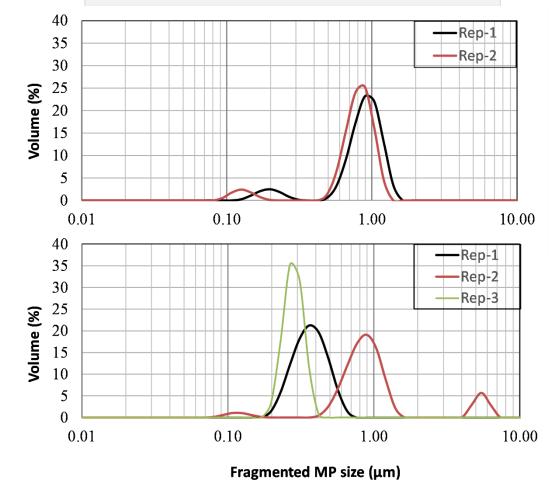
Microspheres (10 and 20 μm)

Adding glass beads

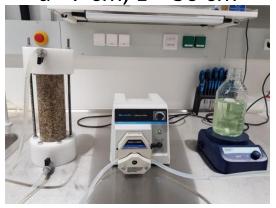



Fragmentation by Homogenizer


Rev: 10 m/s Time: 20 s


Fragmented MP

Fragmented MP size distribution



Wiener Wasser

Parameters - column experiments

Column size:

d = 7 cm, L = 30 cm

Medium Gravel (8 mm)

Fine Gravel (4 mm)

Coarse Quartz (0.6 to 1.3 mm)

Medium Quartz (0.4 to 0.8 mm)

Parameters

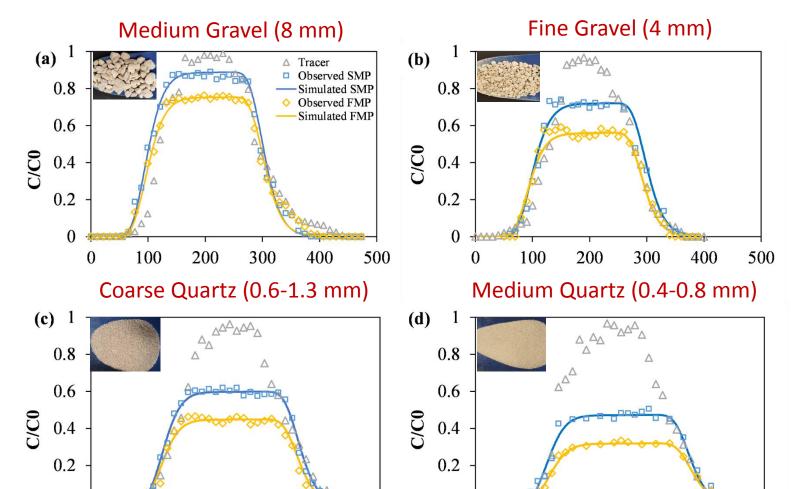
Porosity	0.38	0.36	0.41	0.43
Darcy velocity (m/d)	1.5	1.5	1.5	1.5
Flow rate (ml/min)	4	4	4	4
Avg. size FMP (μm)	1.55	1.70	1.44	1.36
FMPs injected (par/ml)	1.65 x 10 ⁴	5.75 x 10 ⁴	1.45 x 10 ⁴	1.72×10^4

100

200

Time (min)

300



Results

500

100

200

Time (min)

300

500

Key findings

- Higher deposition of fragmented
 MPs due to
 - uneven shape and surface irregularity (e.g. aspect ratio)
 - Surface heterogeneity of the porous media
- Re-orientation of fragmented MPs near pore-spaces.
- Tumbling (rotational) movement of the fragmented MPs.
- Hydrus 1D high values of attachment coefficient of fragmented MPs.

Conclusion

- Surface roughness and irregularity of fragmented MPs was more important than straining.
- The impact of grain and pore size on fragmented MPs was evident.
- Non-uniform MPs should be used for realistic groundwater investigations.
- Highly dynamic riverbank filtration systems (often used as a safe drinking water resource) should be investigated for irregular-shaped MPs as tracers.

Thank you for your attention

Questions