

Idealized simulations: Shear-margin melt causes stronger transient ice discharge than ice-stream melt

Johannes Feldmann, Ronja Reese, Ricarda Winkelmann & Anders Levermann

https://doi.org/10.5194/tc-16-1927-2022

<u>johannes.feldmann@pik-potsdam.de</u>

Gudmundsson et al., GRL (2019)

Motivation

 Virtually all of Antarctica's sea level contribution comes from increased discharge of ice into ocean

 Discharge is regulated by floating ice shelves that buttress the upstream grounded outlet glaciers

Gudmundsson et al., GRL (2019)

Motivation

- Virtually all of Antarctica's sea level contribution comes from increased discharge of ice into ocean
- Discharge is regulated by floating ice shelves that buttress the upstream grounded outlet glaciers

- Increased basal melting
 - → ice-shelf thinning
 - → buttressing reduction
 - → increased ice discharge

→ Basal melting key driver of Antarctica's sea level contribution

Motivation

- Basal ice-shelf melting typically strongest close to central grounding line (thick ice, fast ice stream)
- Existence of along-flow melt channels with relatively warm water (persistent polynias at ice-shelf front)

Basal melt

Pine Island Ice Shelf

Shean et al., The Cryosphere (2019)

Motivation

- Basal ice-shelf melting typically strongest close to central grounding line (thick ice, fast ice stream)
- Existence of along-flow melt channels with relatively warm water (persistent polynias at ice-shelf front)
- Melt channel locations include ice-shelf shear margins

Basal melt

Pine Island Ice Shelf

Shean et al., The Cryosphere (2019)

Alley et al., Science Advances (2019)

Motivation

- Basal ice-shelf melting typically strongest close to central grounding line (thick ice, fast ice stream)
- Existence of along-flow melt channels with relatively warm water (persistent polynias at ice-shelf front)
- Melt channel locations include ice-shelf shear margins

Here we compare sensitivity of ice discharge to ice-stream vs. shear-margin melting

The state of the s

Basal melt

Pine Island Ice Shelf

Shean et al., The Cryosphere (2019)

Alley et al., Science Advances (2019)

- Numerical simulations with Parallel Ice Sheet Model (PISM)
- Idealized setup (MISMIP+) of strongly buttressed, Antarctic-type outlet glacier that streams through a topographic confinement; run into steady state on 1-km resolution

- Numerical simulations with Parallel Ice Sheet Model (PISM)
- Idealized setup (MISMIP+) of strongly buttressed, Antarctic-type outlet glacier that streams through a topographic confinement; run into steady state on 1-km resolution
- Several simplifying assumptions
 (shallow shelf approximation, isothermal ice, no damage/fractures, fixed calving front)
- Relevant physics are captured
 (emergence of buttressing, fast ice streaming, shear margins)

Melt perturbation zones

Feldmann et al., The Cryosphere (2022)

General response:

Thinning, speed-up, retreat, increase in ice discharge

Ice speed-up after 100 yr

General response:

Thinning, speed-up, retreat, increase in ice discharge

Cumulative flux response number

- General response: Thinning, speed-up, retreat, increase in ice discharge
- Stronger response for stronger perturbation and higher concentration of melting close to grounding line

Cumulative flux response number

- General response: Thinning, speed-up, retreat, increase in ice discharge
- Stronger response for stronger perturbation and higher concentration of melting close to grounding line
- Shear-margin melt:
 Long-term response up to 2.5 times
 stronger

Cumulative flux response number

Feldmann et al., The Cryosphere (2022)

Underlying mechanism

- **Ice-stream melt (IS):** Fast advection through ice-stream center
 - → spreads thinning into less buttressing-relevant regions
 - → weaker response

Ice flux after 100 yr

Ice thinning after 100 yr

Underlying mechanism

- **Ice-stream melt (IS):** Fast advection through ice-stream center
 - → **spreads thinning** into less buttressing-relevant regions
 - → weaker response
- **Shear-margin melt (SM):** Weak advection in shear margins
 - → thinning very concentrated in buttressing relevant region
 - → stronger response

Ice flux after 100 yr

Ice thinning after 100 yr

Summary & conclusion

- Idealized simulations of strongly buttressed, Antarctic-type outlet glacier to investigate transient response to basal ice-shelf melting in shear margins (compared to ice-stream center)
- Simulations only account for **purely thinning-induced buttressing reduction** (no shear-margin weakening due to heating/damage)
- Long-term response much stronger for shear-margin melt
- Mechanism: Relatively weak advection in ice-shelf shear margins promotes localized thinning and stronger buttressing reduction, stronger sea-level response → shear-margin melt much more "effective"
 - → Observations of continued melting/thinning beneath Antarctic ice-shelf shear zones should receive special attention!
 - → Mechanism might gain importance with increasing basal melt rates under future global warming

Contact: johannes.feldmann@pik-potsdam.de

Melt perturbation zones

Feldmann et al., The Cryosphere (2022)

Buttressing response

Maximum cFRN

Ice speed-up

Ice flux after 100 yr

Ice speed-up after 100 yr

