EGU2022: "Advances in Pluvial and Fluvial Flood Forecasting, Assessment and Flood Risk Management",23th MAY,2022

Flood flow modelling coupled with MLbased land cover detection from UAV and satellite river imagery

Takuya SATO^{1), 2)},

Shuji IWAMI²⁾, and Hitoshi MIYAMOTO¹⁾

 Shibaura Institute of Technology (SIT), Tokyo, Japan

CTI Engineering Co., Ltd. 2) CTI Engineering Co., Ltd, Tokyo, Japan

CONTENTS

- 1. INTRODUCTION
- 2. FIELD SITE
- 3. METHODS
- 4. RESULTS
- 5. CONCLUDING REMARKS

INTRODUCTION

Background

Vegetation overgrowth and forest expansion have become a serious problem

- decreasing Water Flow Capacity at Flooding
- •changing Riparian Ecosystems and Original Riverine Landscapes

It would be necessary to continuously monitor the vegetation dynamics and their effects on flood disasters for a long period of time.

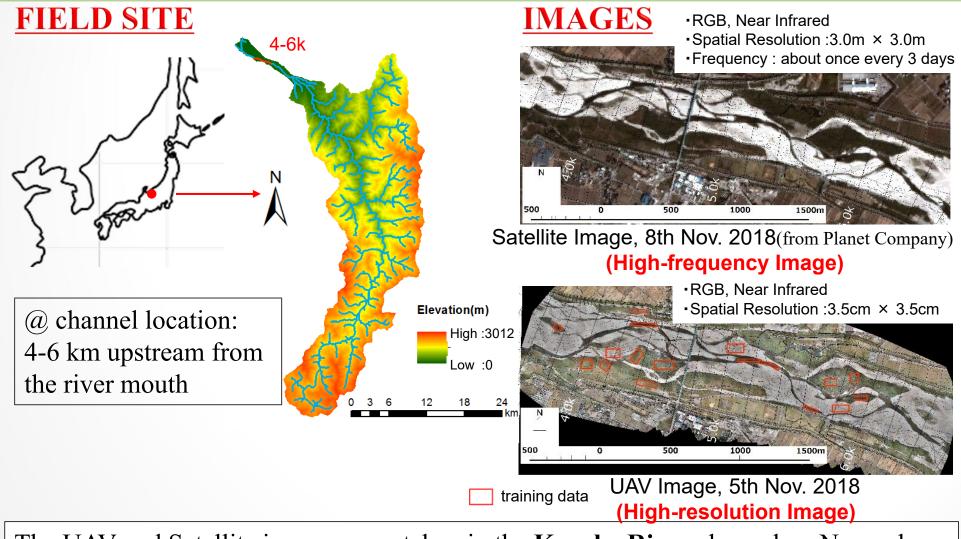
Kurobe River @3k, 28th, Nov, 2017

<u>Purpose</u>

This presentation examined a new method

✓ Coupling flood flow modelling with the machine learning (ML)-based land cover detection from the Unmanned Aerial Vehicle (UAV) and satellite river imagery.

FIELD SITE: Kurobe River



The UAV and Satellite images were taken in the **Kurobe River** channel on November 2018, which was *a braided channel with a well-vegetated gravel bed*.

METHODS (Outline)

1. Creating Training and Validation Image Data for ML

- > The UAV and Satellite river imagery were combined for an ML.
- > RGB and NIR(Near InfraRed) bands were used.

2. Land Cover Detection by ML with the Image Data

- The method used was **Random Forest (RF)** in the scikit-learn.
- F-measure was used to evaluate the accuracy of the land cover detection.

3. Coupling the ML-based Land Covers with a Flood Flow model

- The detected riverine land covers were converted into the roughness coefficients for a two-dimensional flood flow analysis.
- ➤ We examined the reproducibility of flood flow simulation results.

METHODS (Random Forest, F-measure)

Land Cover Detection by a Machine Learning

Images(Training data)

- Satellite images
- •UAV images

✓ Training

Machine Learning Algorithm RF(Radom Forest)

✓ Ground cover detected by applying to the satellite images

Images(Validation data)

Test

Evaluate the accuracy of the land cover detection results

$$F-measure = \frac{2Recall \cdot Precision}{Recall + Precision}$$

$$Precision = \frac{TP}{TP + FP} \quad Recall = \frac{TP}{TP + FN}$$

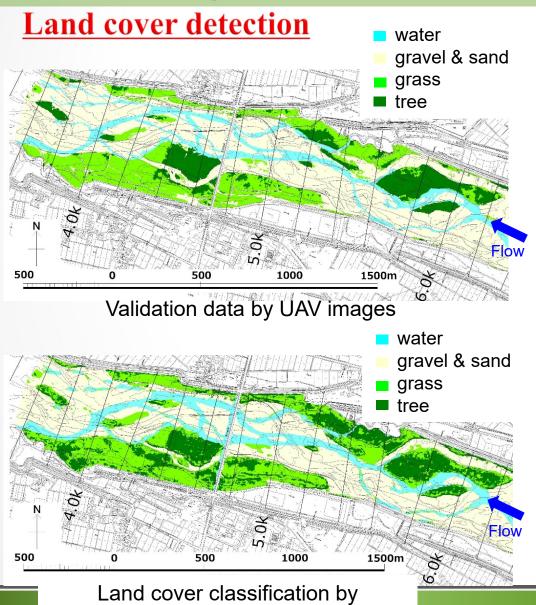
		True condition	
		positive	negative
Predicted condition	positive	TP (True positive)	FP (False positive)
	negative	FN (False negative)	TN (True negative)

METHODS (Flood flow analysis)

Model Conditions

Analysis Model	Two-Dimensional Flood Flow Model
Analysis Section	4-6 km upstream from the river mouth in Kurobe River
Mesh Size	10m × 10m
Flood Discharge	5,200m ³ /s (Planned Discharge in Flood Protection)
Riverine Land Cover	Validation Data from UAV imageryLand Cover Detection Data by RF with Satellite Images
Roughness Coefficients	The following values were arithmetically averaged for calculation. •water:0.04 •gravel/sand:0.04 •grasse:0.06 •tree:0.10

RESULT(Land cover detection)

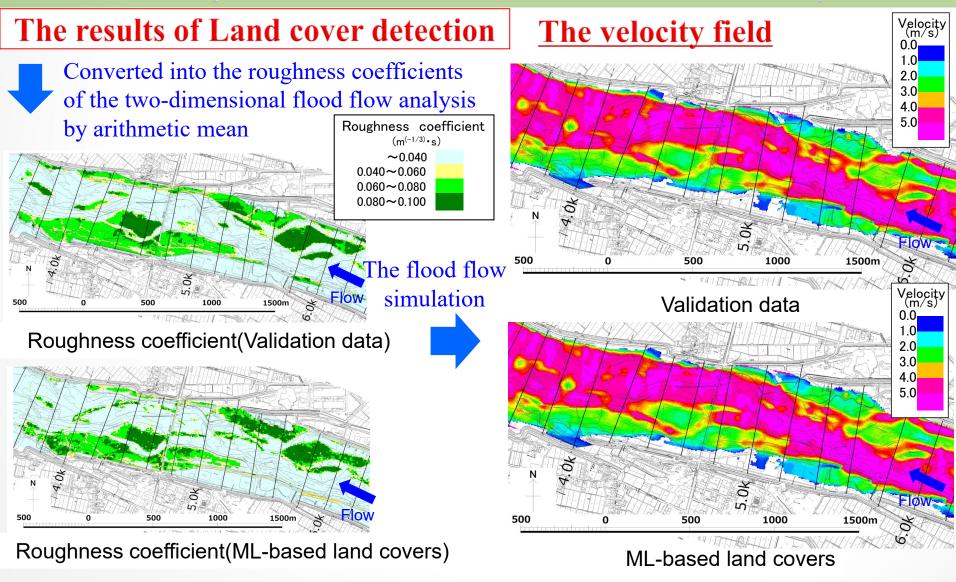


F-measure

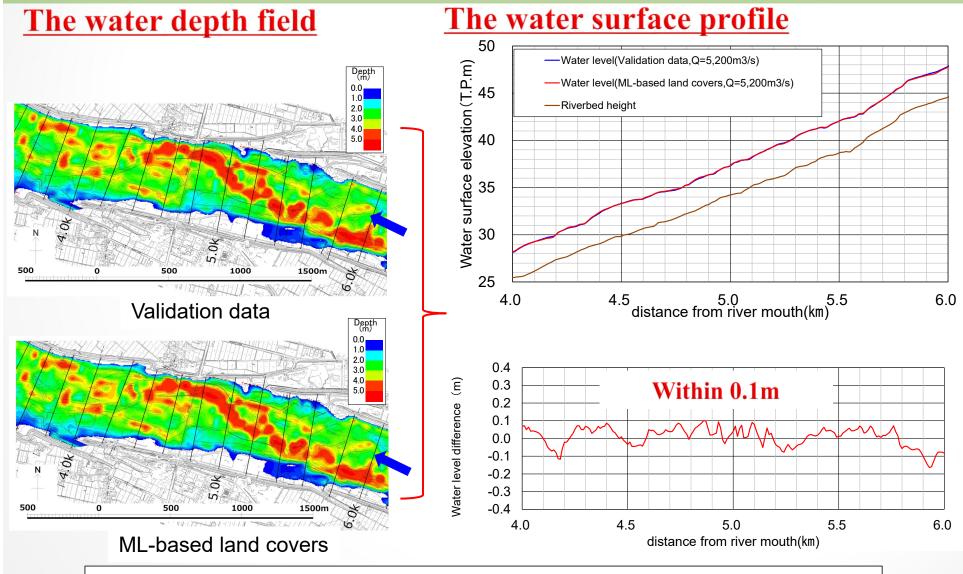
Land	Dataset for ML	
Cover	RGB+NDVI	
Water	0.78	
Gravel	0.89	
& sand		
Grass	0.65	
Tree	0.59	
ALL	0.79	

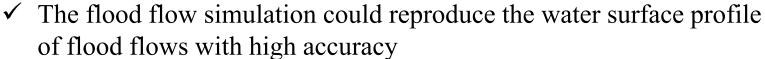
- ✓ Land covers were classified into water, gravel & sand, grass, and tree.
 - (Difficult to classify trees and grass from only satellite image information due mainly to low spatial resolution.)
- ✓ Overall F-measure was 0.79.

RESULT(The flood flow simulation)



RESULT(The flood flow simulation)





CONCLUDING REMARK

- Combining the high- and low-resolution images in the RF could effectively
 detect riverine land covers from the satellite images with a certain degree of
 accuracy.
- The flood flow simulation could reproduce the velocity field and water surface profile of flood flows with high accuracy.

- These results strongly suggest the effectiveness of coupling the current flood flow modelling with the ML-based land cover detection for grasping the most vulnerable portions in river flood management.
- ➤ In the future, it is necessary to clarify the influence of machine learning detection accuracy of riverine land covers on their application of flood flow simulation.