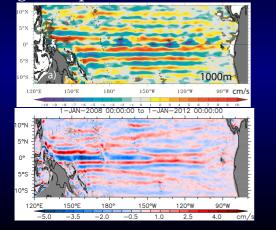
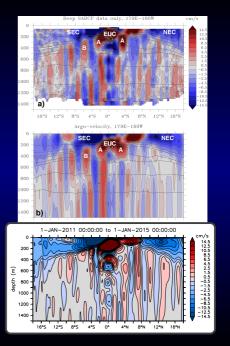
Zonal jets in the eastern North Pacific in an ensemble of eddy-resolving OGCM runs

(Furue R et al. 2021. Ocean Modell. 159: 101761)

Furue R, Nonaka M, Sasaki H


APL/JAMSTEC


EGU, 2022-05-23

Zonal jets

Cravatte et al's (2012) ADCP & geostrophic velocities.

Deterministic or probabilistic?

Theories & hypotheses:

- ► Free geostrophic turbulence + β -effect \Rightarrow series of jets ("Rhines effect").
- ► Eddies or some forcing along eastern boundaries —Sverdrup-type (re)circulation (Davis et al 2014)
- ► Instability of annual Rossby waves (Qiu et al 2013).
- Secondary instability (Berloff et al)

Question:

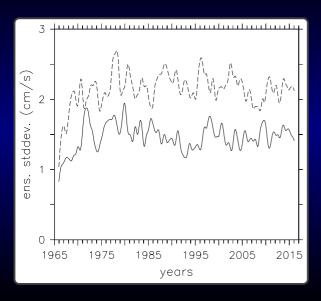
► Are their positions etc. determined by external forcing?

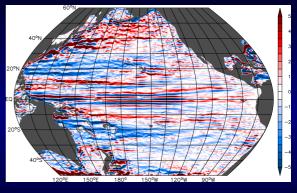
Data & methods

OFES2:

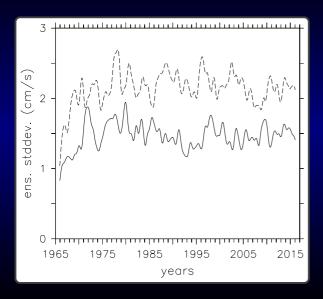
- ► 1/10°, semi-global (76°S–76°N), 105 levels.
- ► Surface forcings derived from JRA55-do (Tsujino et al. 2018).
- ▶ 1958 to 2016.

Ensemble:

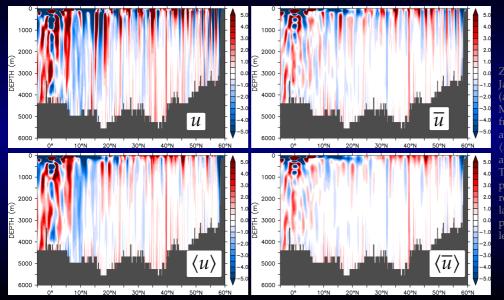

► A 10-member ensemble over 1965–2016, with only slight differences in the initial condition. Use monthly means.


Averages:

- ▶ 2-year moving avr. with Hann window, \overline{u} , to average out eddies.
- ightharpoonup Ensemble average, $\langle u \rangle$.

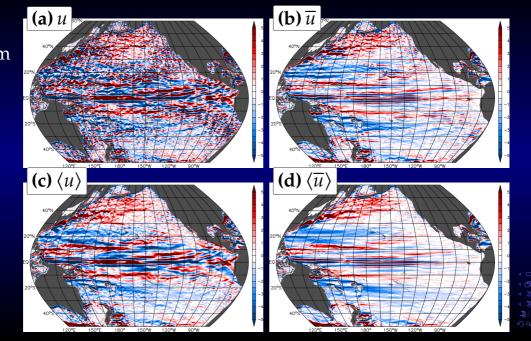

Ensemble spread

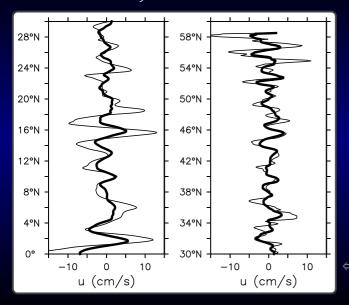
Ensemble spread



► Ensemble spread stabilizes in 5–10 years.

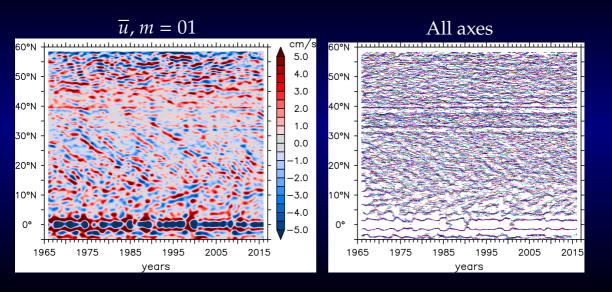
⇐ The ensemble variance of u is first averaged over 10° – 30° N along 140° W and its square root is calculated (solid), and the same calculation is carried out over 45° – 60° N (dashed curve). The curves miss the first and last years because \overline{u} is not defined there.


Meridional sections

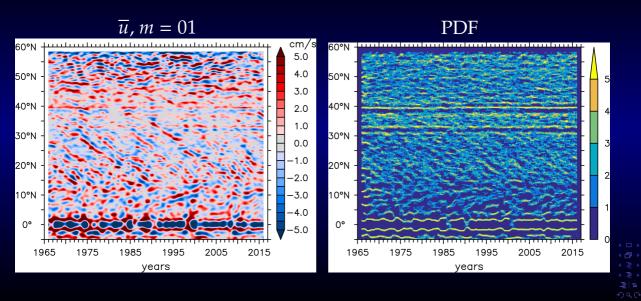

Zonal velocity at 140°W at January 2010 (36th year): M01; (b) 2-year mean, \overline{u} , average of monthly mean, renders the length of each latitude circle proportionally to its real length on the sphere.

Maps

 $z = -500 \,\mathrm{m}$



Detection of jet axes



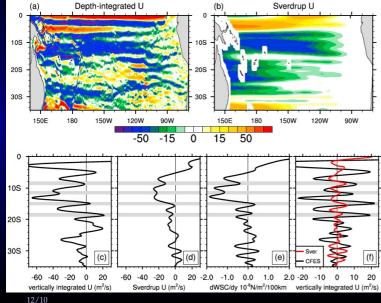
- ➤ 2-year Hann filter to remove mesoscale eddies and seasonal cycle.
- Eastward jet axis = latitude of local max. = y s.t. u(y) > 0 $\text{and } u(y) > u(y \Delta y)$ $\text{and } u(y) > u(y + \Delta y)$ $\text{with } \Delta y = 1/10^{\circ}.$ $\Leftarrow u \& \overline{u} \text{ at } 140^{\circ}\text{W, } 500 \text{ m.}$

Jet axes

Jet axes

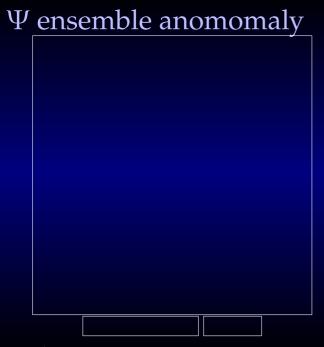
Conclusions

- ► Tropical jets show some determinism and some tendency to migrate poleward.
- ► Subtropical jets migrate equatorward; not clear whether determinism exists or not.
- ► Subpolar jets are random.
- ► Near the American continent, the meridional wavelengths are shorter, and North American ones seem deterministic.
- ► There are several steady jets, which are anchored to steep bottom slopes; they, in turn, appear to trap shallower counter jets.

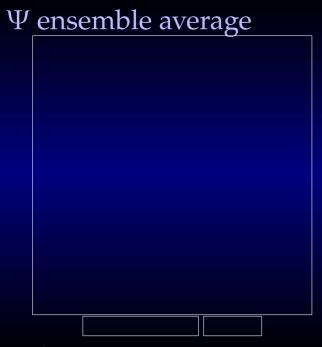


Questions

- ► What controls the systematic migration of the tropical jets? Basin modes (M. Claus, pers. comm.)?
- ▶ What about the subtropical jets (migration, determinism)?
- ► Are the steady jets anchored or generated at the topographic features?
- ► What generates the near-America jets with shorter wavelengths? Coastal flows (Davis et al 2014)?
- ► Are there impacts on the atmos. bndry layer? [What about Kessler & Gourdeau (2006) and Taguchi et al (2012) ?]
- **▶**



Feedback from the atmosphere?



- Kessler and Gourdeau (2006) found South-Pacific deep jets to be consistent with a Sverdrup calculation.
- Taguchi et al (2012): Zonal jets
 - \rightarrow SST striation
 - \rightarrow Atmos. bndry layer
 - → Anomalous wind curl
 - \rightarrow Jets correlated with Sverdrup calculation.

 酉 ♪ 夏 ♪ 夏 ♪

< ∰ ↑ < ½ ↑ < ½ ↑