

GRoW - GlobeDrought Characterizing drought risk and impact

Modeled water – vegetation dynamics under revision using GRACE-based data assimilation

Helena Gerdener¹, Jürgen Kusche¹, Kerstin Schulze¹, Gohar Ghazaryan^{2,3,4}, Olena Dubovyk^{2,3}

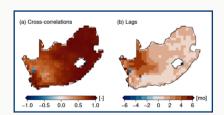
⁴ Leibniz Center for Agricultural Landscape Research, Müncheberg, Germany

EGU 2022 May 27, 2021

¹Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany

² Remote Sensing Research Group (RSRG), Department of Geography, University of Bonn, Bonn, Germany

³ Center of Remote Sensing of Land Surfaces, University of Bonn, Bonn, Germany


- Water is an essential source for food production and drinking water
- Countries where a large part of the population depends on the agrictultural sector are strongly affected by water shortages, for example South Africa
- Important to build a realistic picture of the response dynamics of fluxes precipitation to water storages and vegetation
- Analysis of surface and subsurface water mostly based on in-situ data or models; GRACE data rarely explored due to resolution issues, does not separate storages

WATER PROPAGATION

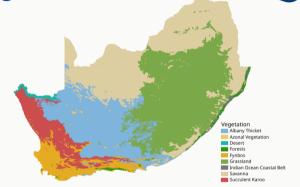
Model simulations

- Enable extending the very local scale to a regional or global scale
- Here we use Watergap 2.2d/e Water storage and vegetation measures
- Based on assumptions and forcing data uncertainty
- E.g. there can be unrealistic values of actual evapotranspiration (AET) in some regions compared to observed AET:

Observation-based data

- GRACE assimilation into WGHM
 - Soil mositure
 - Surface water
 - Groundwater
- Vegetation indices from remote sensing
 - MODIS ActualEvapotranspiration
 - MODIS Leaf Area Index

STUDY IN SOUTH AFRICA


In revision JoH May 2022

Revising precipitation - water storages - vegtation signatures with GRACE-based data assimilation

H. Gerdener, J. Kusche, K. Schulze, G. Ghazaryan, O. Dubovyk

- AIM: Assessing modeled water vegetation dynamics by observation-based data sets
- Methods:

Regression model

- Extract subsignals
- Relate Ampltudes and Phases

$$\phi(j)_{P,GW} = \phi(j)_{GW} - \phi(j)_P,$$

Process Model

 Relate current water storage to precipitation of the same month and previous month water

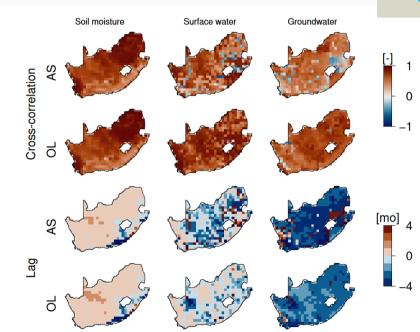
$$S_i(t) = c_i \cdot S_i(t-1) + d_i \cdot P_i(t),$$

Principal Component Analysis

Extract dominant modese.g. Drought or ENSO related

$$\mathbf{X} = \mathbf{P}\mathbf{E}^T, \mathbf{P} = \mathbf{X}\mathbf{E},$$

Correlation Analysis


 Extract correlations and lags between data sets

DA STUDY IN SOUTH AFRICA: RESULTS

- Duration for precipitation recharging surface and groundwater storage is shorter modeled than observed
- Model overestimates precipitation amount contributing to water storage (same for water storage amount contributing to vegetation)
- Observed propagation time of vegetation to soil mosture if often shorter than in the model

- Observation-based data sets enable a more realistic picture of water propagation through water cycle as compared to the model
 - →emphasize the need for assimilating GRACE observations into the models
- Insights will help modelers improve model structures; e.g. during climate events

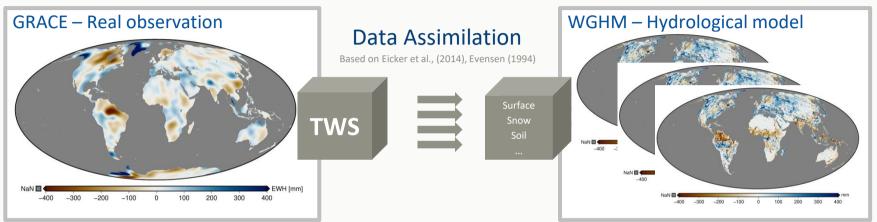
OUTLOOK:

- Compare the water vegetation dynamics in other hydrological models with our data sets
- Extend the assimilation framework further: Global analysis, include GRACE-FollowOn, simultaneous calibration and data assimilation

LITERATURE

- Döll, P., F. Kaspar and B. Lehner (2003). A global hydrological model for derivingwater availability indicators: model tuning and validation. J Hydrol, 207:105–134.doi:10.1016/S0022-1694(02)00283-4.
- Eicker, A., Schumacher, M., Kusche, J., Döll, P., & Schmied, H. M. (2014). Calibration/data assimilation approach for integrating GRACE data into the WaterGAP Global Hydrology Model (WGHM) using an ensemble Kalman filter: First results. Surveys in Geophysics, 35(6), 1285-1309.
- Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. *Journal of Geophysical Research: Oceans, 99*(C5), 10143-10162.
- Gerdener, H., Kusche, J., Schulze, K., Ghazaryan, G., Dubovyk, O. (submitted): Revising precipitation water storages vegetation signatures with GRACE-based data assimilation
- Mayer-Gürr, T., Behzadpour, S., Ellmer, M. Kvas, A. Klinger, B., Zehentner, N. (2016): ITSG-Grace2016 Monthly and Daily Gravity Field Solutions from GRACE. GFZ Data Services. http://doi.org/10.5880/icgem.2016.007
- Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021.
- Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Schmied, H. M., Van Beek, L. P., ... & Bierkens, M. F. (2018). Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences, 115(6), E1080-E1089.

BACKUP SLIDES



ADDRESS CHALLENGE:

PDAF

Parallel data assimilation framework http://pdaf.awi.de

COMBINATION OF REAL OBSERVATIONS WITH MODEL OUTPUT

Spatial resolution ca. 300 km monthly

Spatial resolution ca. 50 km daily

By assimilating GRACE into WGHM...

... the model gets closer to reality
... the spatial resolution of GRACE is increased
the vertical resolution of GRACE is increased

GLWS: Global Land Water
Storage data set
available based on GRACE/FO assimilation

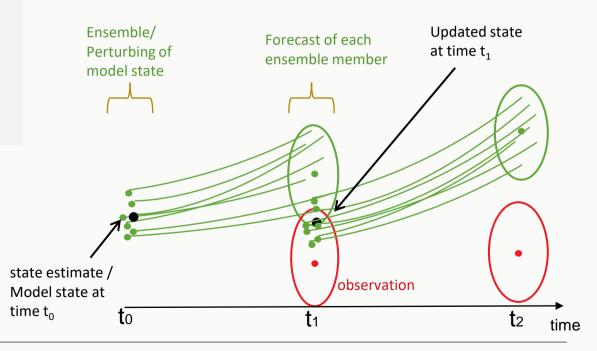
DATA ASSIMILATION CONCEPT

PDAF
Parallel data
assimilation
framework
http://pdaf.awi.de

AIM:

Improving the realism of model simulations by updating the model prediction with observations

ENSEMBLE KALMAN FILTER:


Integrate the observations into the model based on the ensemble spread (Evensen 1994)

PREDICTION:

$$X_{k}^{-} = [X_{k}^{(1)-},...,X_{k}^{(N)-}]$$

UPDATE:

$$X_{k}^{+} = X_{k}^{-} + K_{k}(Y_{k} - AX_{k}^{-})$$

BACKUP: DA STUDY IN SOUTH AFRICA

Multi Linear Regression

Methods:

$$x(j,t) = a_0(j) + a_1(j)(t - t_0) + b_1(j)\cos(\omega t) + b_2(j)\sin(\omega t) + c_1(j)\cos(2\omega t) + c_2(j)\sin(2\omega t)$$

$$A(j)_{annual} = \sqrt{\hat{b}_1(j)^2 + \hat{b}_2(j)^2} \qquad \phi(j)_{annual} = \arctan(\frac{\hat{b}_2(j)}{\hat{b}_1(j)})$$

$$\underline{A(j)_{GW}}$$

$$A(j)_{P,GW} = \frac{\frac{A(j)_{GW}}{\sigma_{A_{GW}}}}{\frac{A(j)_{P}}{\sigma_{A_{P}}}} \qquad \phi(j)_{annual} = \phi(j)_{GW} - \phi(j)_{P}$$

Principal Component Analysis

$$X = PE^{T}, P = XE$$
 $PC_{i} = \frac{p_{i}}{\sigma_{p_{i}}}$ $EOF_{i} = \sigma_{p_{i}}e_{i}$

Process Model

$$S_i(t) = c_i \cdot S_i(t-1) + d_i \cdot P_i(t)$$

$$V_i(t) = e_i \cdot V_i(t-1) + f_i \cdot S_i(t)$$