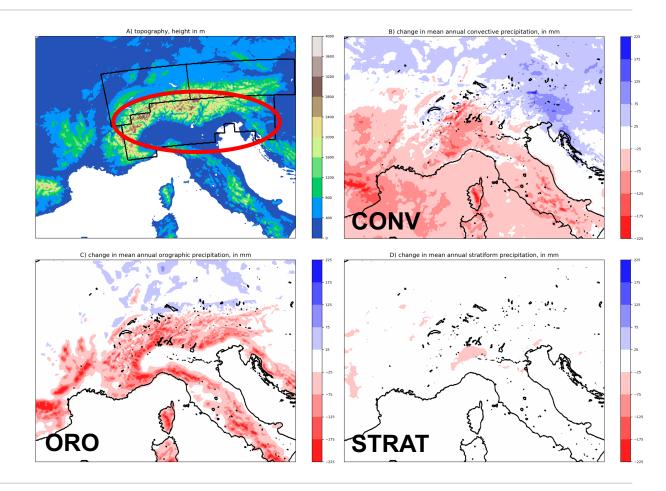


A robust shift towards higher intensity convective and orographic rainfall over the Alps in a warmer climate

TORGE LORENZ, STEFAN SOBOLOWSKI & THE CORDEX FLAGSHIP PILOT STUDY ON CONVECTION OVER EUROPE AND THE MEDITERRANEAN

EGU 2022 CL2.4 LOCAL SCALE CLIMATE CHANGE IMPACTS, PROCESSES AND EXTREMES 24.05.2022

Changes in local to regional hydroclimate are among the most impactful consequences of a rapidly changing climate

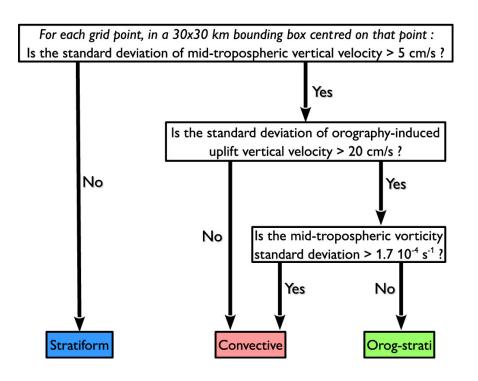


We show that despite overall drying all precipitation types shift towards higher intensities with robust increases in extreme events

- The entire distributions of precipitation types shift towards higher intensities
- This shift comes with a strong decline in moderate intensity events and a strong increase in extremes
- These changes can be explicitly linked to processes underlying convective and orographic precipitation

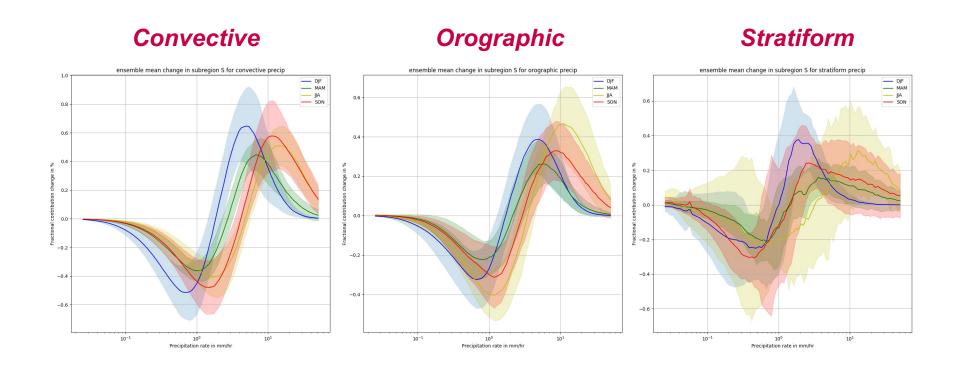
Building on previous work we ask: What happens to the full distribution of specific precipitation types at convection permitting scales?

Global models Regional models (~12km) 48 48 Latitude (° N) Latitude (° N) 46 44 44

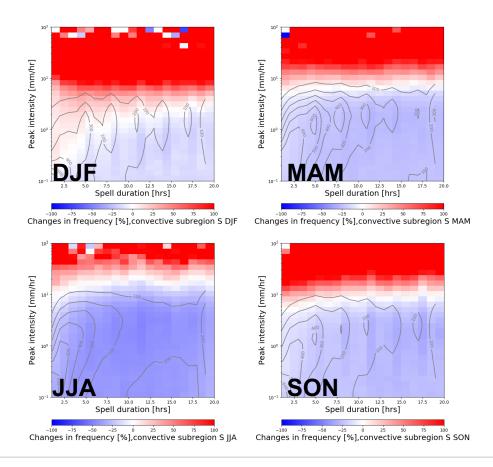


We employ a physically based algorithm to separate out convective, orographic and stratiform precipitation types

Poujol, B., Sobolowski, S. P., Mooney, P. A., & Berthou, S. (2020). A physically based precipitation separation algorithm for convection-permitting models over complex topography. *Quarterly Journal of the Royal Meteorological Society*, *146*(727), 748–761. https://doi.org/10.1002/qj.3706



The entire distribution of precipitation shifts towards higher intensities and this change is dominated by convective precipitation



The shift is accompanied by an *increase* in frequency, intensity and duration of convective extreme events and a *decrease* in more moderate precipitation events

Recap: Despite overall drying the all precipitation types shift towards higher intensities with robust increases in extreme events

- The entire distribution of precipitation exhibits shifts towards higher intensities
- This shift comes with a strong decline in moderate intensity events and a strong increase in extremes
- These changes can be explicity linked to processes underlying convective and orographic precipitation

Ban, N., et al. (2021). The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: Evaluation of precipitation. *Climate Dynamics*, 1–28. https://doi.org/10.1007/s00382-021-05708-w

Pichelli, E., et al. (2021). The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: Historical and future simulations of precipitation. *Climate Dynamics*. https://doi.org/10.1007/s00382-021-05657-4

Coppola, E., et al. (2018). A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. *Climate Dynamics*. https://doi.org/10.1007/s00382-018-4521-8

