Bathymetric mapping in turbid braided mountain streams using SfM-MVS photogrammetry and statistical approaches

Mancini¹, D., Roncoroni¹, M., Antoniazza¹, G., Ouvry², B. and Lane¹, S.N.

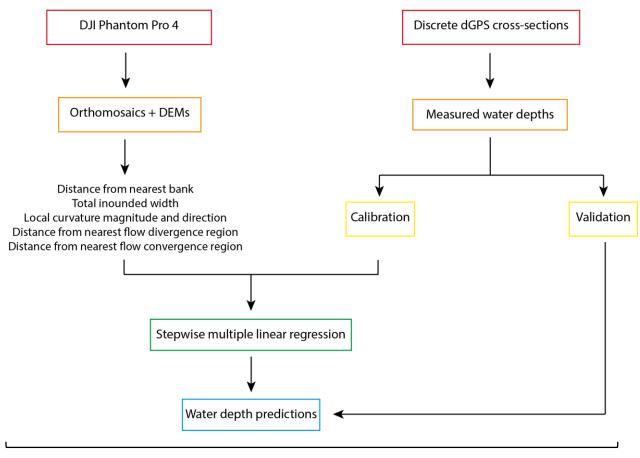
¹Institute of Earth Surface Dynamics, Université de Lausanne, Switzerland

²Institute of Glaciology and Geomorphodynamics, University of Zürich, Switzerland

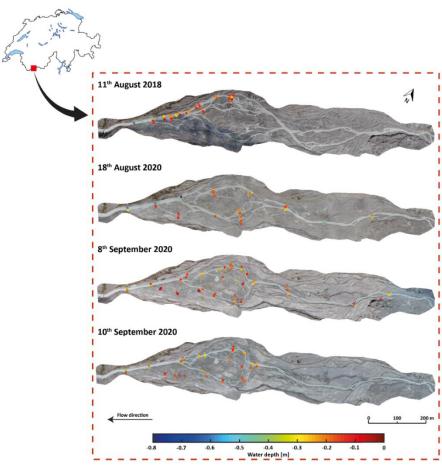
Corresponding author: davide.mancini@unil.ch

1. Introduction

- Traditional techniques to collect bathymetric data in shallow rivers:
 - Total station
 - Differential GPS systems


Time consuming + point density vs. survey extent

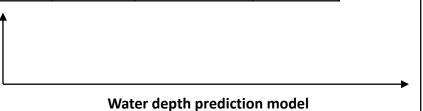
• Through-water photogrammetry (correct light reflection due to the water-air interface; e.g. Dietrich, 2017)



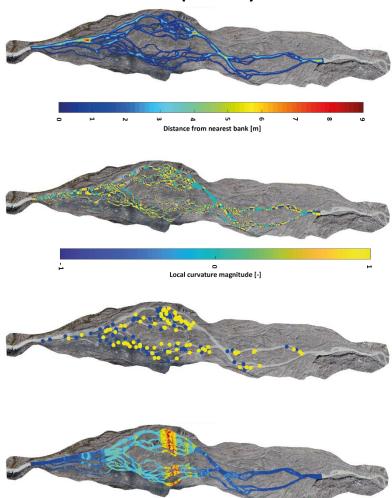
• Aim: Test if it possible to predict water depth distribution in a shallow braided stream having high suspended sediment content from basic morphometric information

MATLAB algorithm

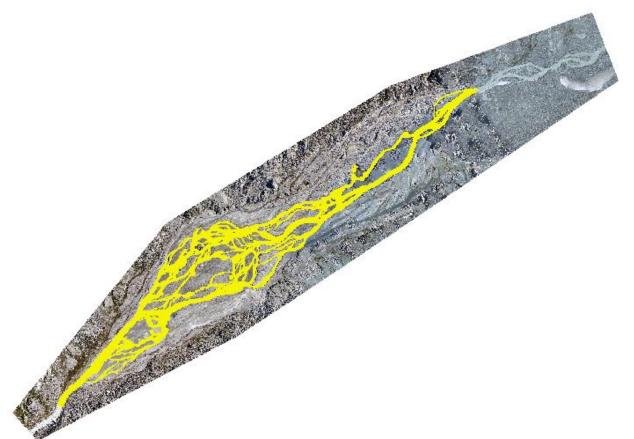
Data	UAV and dGPS	dGPS measurements			
Date	acquisition time	Total points	Cross-sections		
11.08.2018	08:50 - 10:50	176	20		
18.08.2020	09:00 - 12:55	206	23		
08.09.2020	09:40 - 12:11	259	37		
10.09.2020	08:55 - 11:12	157	25		


Input data:

1. Photogrammetrically-derived orthomosaics and DEMs

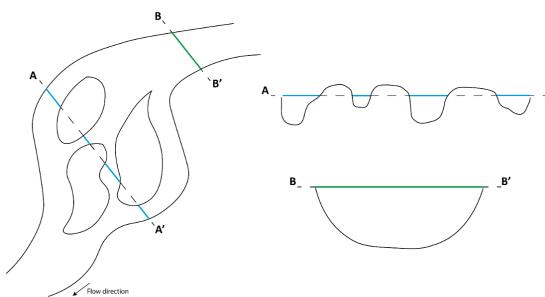

Date	Acquisition time	Total number of images	GCPs RMS error [pix]
11.08.2018	08:50 - 10:50	1072	0.53
18.08.2020	09:00 - 12:55	2629	0.74
08.09.2020	09:40 - 12:11	1959	1.59
10.09.2020	08:55 - 11:12	1849	1.26

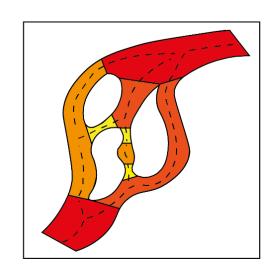
2. Water depth measurements of discrete stream cross-sections

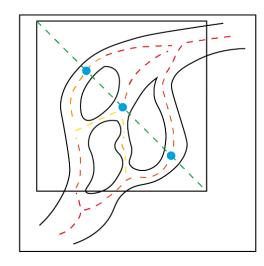

	Total		Calibrati	on	Validation		
Date	Number of points	Cross-sections	Number of points	Cross-sections	Number of points	Cross-sections	
11.08.2018	176	20	92	10	84	10	
18.08.2020	206	23	112	12	94	11	
08.09.2020	259	37	136	19	123	18	
10.09.2020	157	25	82	13	75	12	

Calculation of explanatory variables:

• Variable: Distance from nearest bank

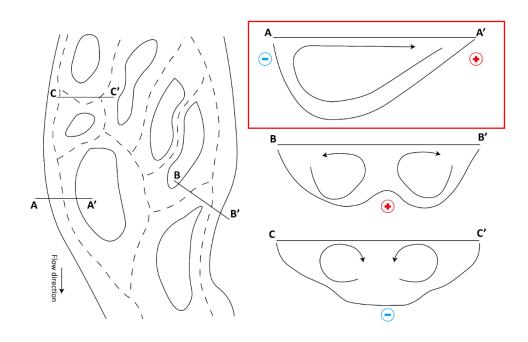


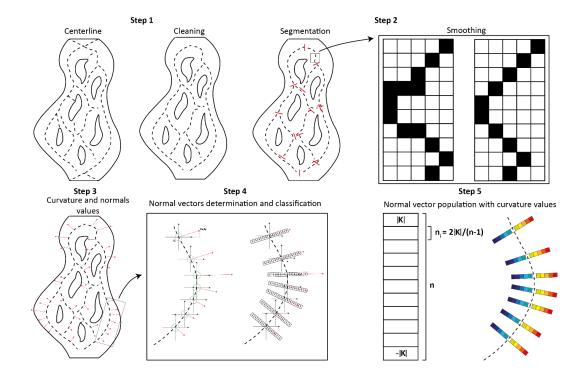

 $DnB_i = bwdist[bwmorph(IA_i)] x Res$


Where:

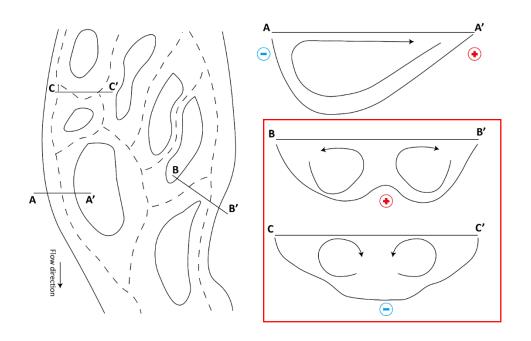
bwdist = Matlab "distance transform of binary" function bwmorph = Matlab "morphological operations on binary images" function $DnB_i = distance$ from nearest bank for the inounded cell i $IA_i = binary$ image of the inounded area Res = orthomosaic resolution (i.e. 0.20 m)

Variable: Total inunded width




$$TIW_i = min_{ij} [\sum_{n=1}^{1400} d_j (lw)]$$

Where:


 TIW_i = Total inounded width associated to the inounded cell i min_{ij} = nearest distance between the inounded cell i and the centerline cell j d_j (Iw) = ones diagonal matrix associated to the centerline cell j summing all local channel width values along the diagonal.

Variable: Total inunded width

• Variable: Distance from nearest flow divergence and convergence regions

$$D_{dci} = min_{ij}[bwdist[bwmorph(DC_j)] x Res]$$

Where:

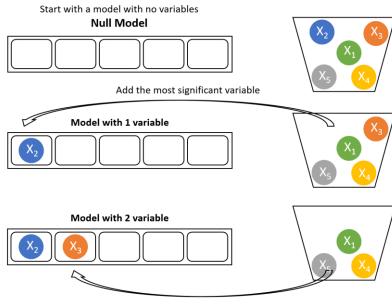
 D_{dci} = Distance from nearest divergence and convergence region for inounded cell i min_{ij} = nearest distance between the inounded cell i and the divergence or convergence region j

 DC_i = Empty matrix associated to the divergence or convergence region j

Res = Orthomosaic resolution (i.e. 0.20 m)

bwdist = Matlab "distance transform of binary" function

bwmorph = Matlab "morphological operations on binary images" function

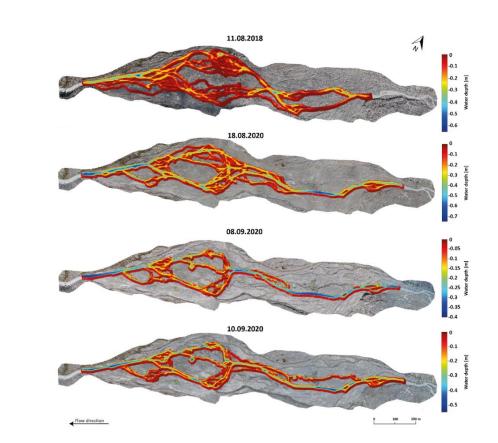

- Post-processing
 - Stepwise approach to calibrate a multiple regression
 - 5 variables:
 - Distance to nearest bank
 - Total inounded width
 - Local stream curvature magnitude and direction
 - Distance to nearest flow divergence region
 - Distance to nearest flow convergence region

Water depth =
$$a_0 + a_1 \times (X_1) + a_2 \times (X_2) + a_3 \times (X_3) + a_4 \times (X_4) + a_5 \times (X_5)$$

Rule: p-value > 0.05 (α) -> model vs. candidate predictors

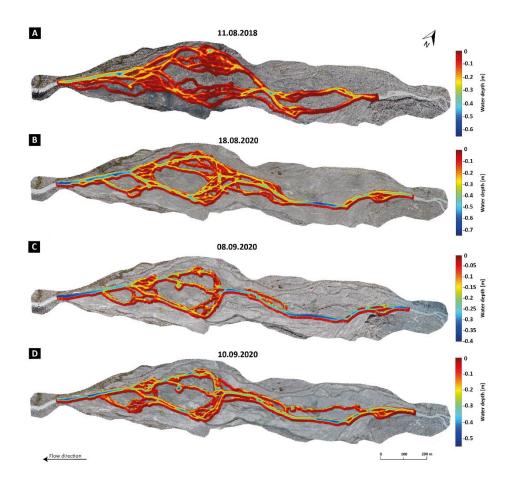
- Aim:
 - + R2 between response and explanatory variables
 - SD between observations and predictions

Forward stepwise regression

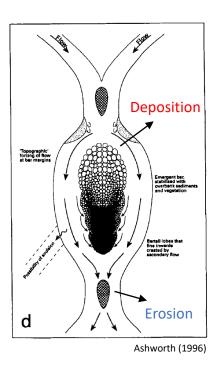

Keep adding the most significant variable until reaching the stopping rule or running out of variables

• Calibration: forward stepwise multiple linear regression

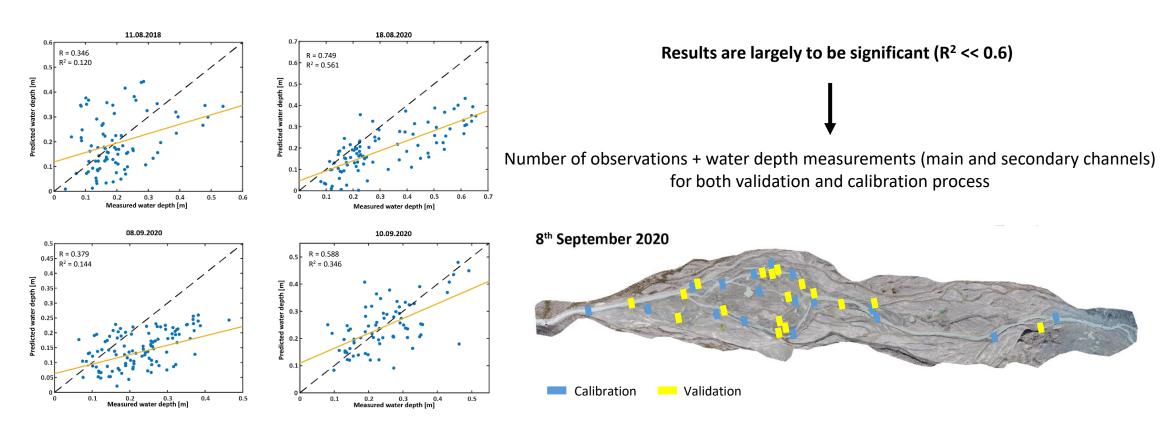
- SDE


Water depth = $a_0 + a_1 \times (X_1) + a_2 \times (X_2) + a_3 \times (X_3) + a_4 \times (X_4) + a_5 \times (X_5)$

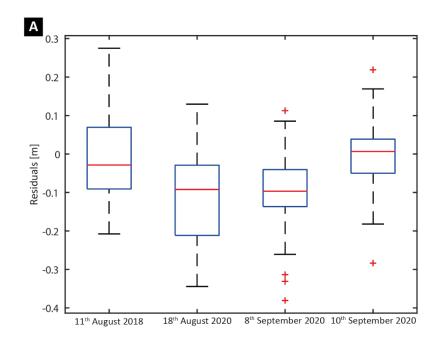
Date Step		Variable			Coeff	p-value	R ²	SDE			
Date Step	Variable	a ₀ a ₁ a ₂ a ₃ a ₄				a₅	p-value	K-	JDE		
1	1	Total Width	0.490	-0.010					4.1 x 10 ⁻¹¹	0.346	0.102
2018	2	+ Dist. nearest bank	0.377	-0.008	0.037				0.001	0.486	0.090
3 4	3	+ Convergence	0.446	-0.009	0.047	-0.006			9.7 x 10 ⁻⁴	0.574	0.082
	4	+ Divergence	0.287	-0.005	0.054	-0.005	0.003		6.5 x 10 ⁻⁴	0.625	0.077
18.08.2020	1	Dist. nearest bank	0.190	0.093					2.2 x 10 ⁻⁹	0.375	0.138
18.08	2	+ Divergence	0.144	0.069	0.004				4.7 x 10 ⁻⁹	0.545	0.118
0	1	Total Width	0.371	-0.012					7.3 x 10 ⁻⁷	0.367	0.081
08.09.2020	2	+ Dist. nearest bank	0.305	-0.010	0.033				7.2 x 10 ⁻⁴	0.450	0.075
_	3	+ Convergence	0.261	-0.008	0.026	8.8 x 10 ⁻⁴			0.002	0.489	0.072
00 1	1	Dist. nearest bank	0.148	0.076					1.3 x 10 ⁻¹¹	0.434	0.088
10.09.2020	2	+ Divergence	0.134	0.064	0.001				2.3 x 10 ⁻⁶	0.537	0.079
3	3	+ Convergence	0.138	0.069	0.003	-0.003			2.6 x 10 ⁻⁴	0.610	0.073

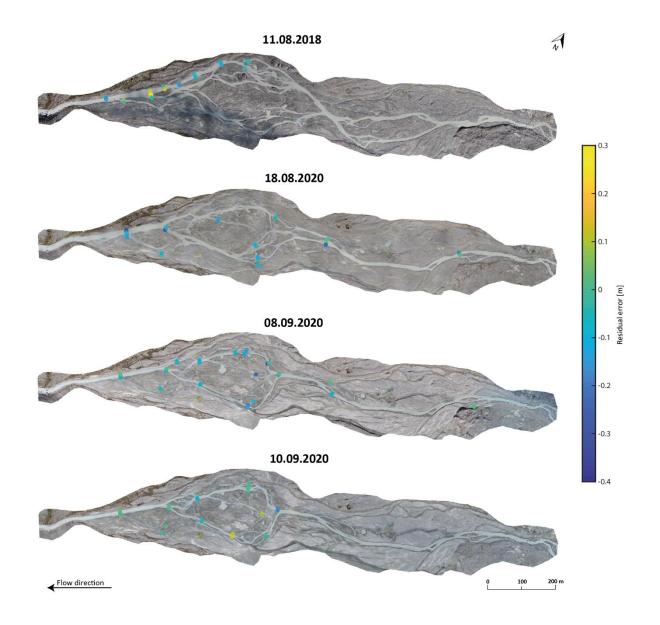

Rule: p-value < 0.05 (α) -> model vs. candidate predictors

• Predictions



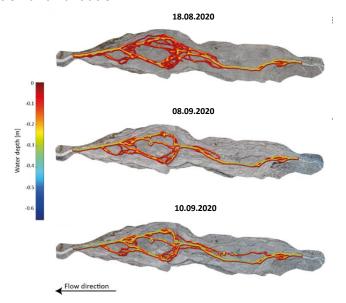
Basic hydraulics theories are respected:


- i) Water depths are deeper in straight channel patterns
- i) Convergence = incision = deeper
- ii) Divergence = deposition = shallower



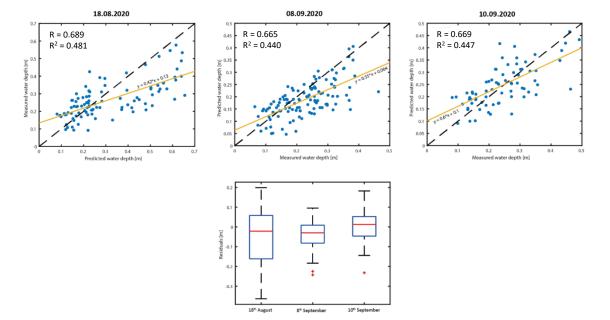
Validation

• Predictions - validation

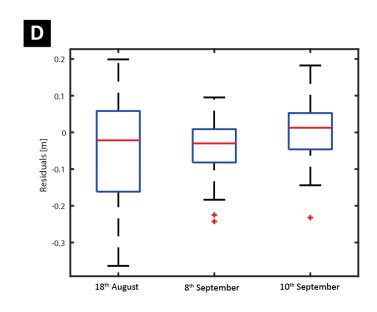


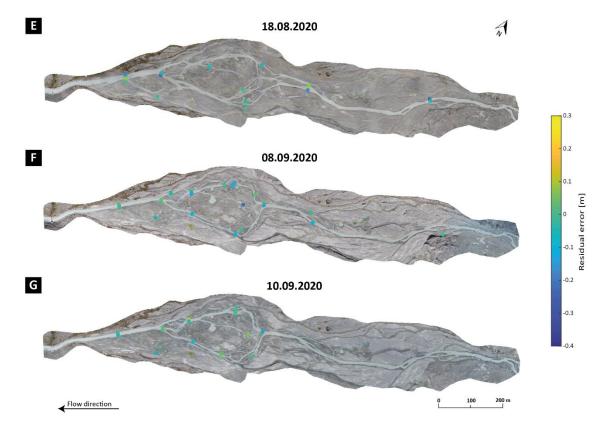
• Pool calibration: 2020 datasets

1. Water depth measurements:


	Total	Calibration	Validation
Date	Number of points	Number of points	Number of points
18.08.2020	206	112	94
08.09.2020	259	136	123
10.09.2020	157	82	75
Total	622	330	

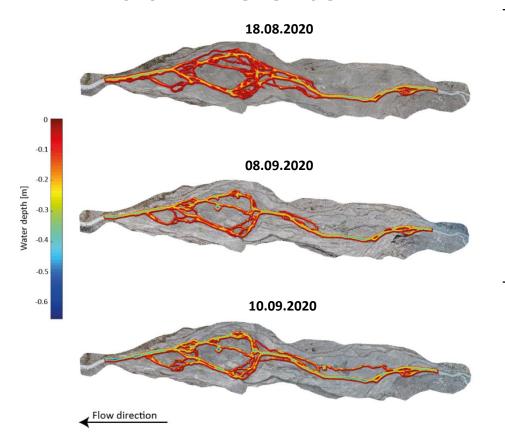
3. Prediction and validation:

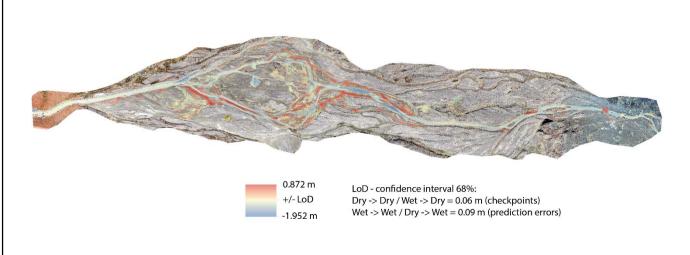



2. Stepwise regression: Water depth = $a_0 + a_1 \times (X_1) + a_2 \times (X_2) + a_3 \times (X_3) + a_4 \times (X_4) + a_5 \times (X_5)$

۵.			Coe	fficient a	9				Stati	stics		
Step	Variable	a _o	a ₁	a ₂	a ₃	a ₄	a ₅	R	R ²	SDE	p-value] .
1	Dist. nearest bank	0.147	0.083					0.596	0.355	0.118	2 x 10 ⁻²⁶] ;
2	+ Divergence	0.132	0.073	0.001				0.751	0.560	0.113	8 x 10 ⁻⁸	▼

• Pool calibration: residual error





• Residual error distribution: single calibrated models vs. pool calibration

Date	Statistics	Specific models	Generalized model	% Difference
	Median	-0.092	-0.022	-70.21
18 th August	Mean	-0.118	-0.052	-55.52
	SDE	0.114	0.122	+12.54
	Median	-0.097	-0.030	-68.64
8 th September	Mean	-0.092	-0.030	-67.17
	SDE	0.086	0.064	-25.90
	Median	0.006	0.012	-60.32
10 th September	Mean	0	0	0
	SDE	0.083	0.073	-10.84

• DEMs of Difference

4. Conclusions

• Take home messages:

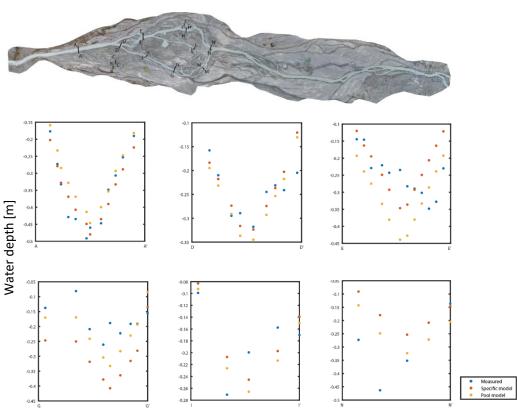
- 1. Basic morphometric information can be used to estimate water depth distribution in braided streams
 - Even with over -/ under- estimations the general shape of the channel is kept
- The pool model seems to have a higher predictive capacity compared to single calibrated models
 - ➤ Higher R² values and contained residual errors
- 3. Water depth prediction maps are in line with basic hydraulic theories (e.g. Leopold and Maddock, 1953; Ashmore, 1991; Ashworth, 1996)
 - ➤ Water depth is deeper in straight and channelized reaches (i.e. main channel)
 - ➤ Flow divergence regions = shallower -> deposition

> Flow convergence regions = deeper -> erosion

Secondary channels

Thank you for your attention!

Follow us and keep updated:



@alp_wise

alp_wise

8th September 2020

