Hydrologic Extremes at the Global Scale

100-year Analysis and 180-year Reconstruction

B. Renard 1,2,3 D. McInerney 2 S. Westra 2 M. Leonard 2 D. Kavetski 2 M. Thyer 2 J.-P. Vidal 1

¹INRAE, RiverLy Research Unit, Lyon, France

²School of Civil, Environmental and Mining Engineering, University of Adelaide, Australia

³INRAE, RECOVER Research Unit, Aix-en-Provence, France

EGU General Assembly, 27 May 2022

"The frequency and intensity of heavy precipitation events have increased since the 1950s over most land area for which observational data are sufficient [...]"

"The frequency and intensity of heavy precipitation events have increased since the 1950s over most land area for which observational data are sufficient [...]"

"Confidence about peak flow trends over past decades on the global scale is low [. . .]"

"The frequency and intensity of heavy precipitation events have increased since the 1950s over most land area for which observational data are sufficient [...]"

"Confidence about peak flow trends over past decades on the global scale is low [. . .]"

"The frequency and intensity of heavy precipitation events have increased since the 1950s over most land area for which observational data are sufficient [...]"

"Confidence about peak flow trends over past decades on the global scale is low [. . .]"

"changes may be more complex than simple trends"

Objectives

Better understand the temporal variability of heavy precipitation (P) and flood (Q) at the global scale by means of an innovative probabilistic model

100-year analysis

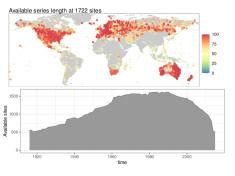
- Identify common (P+Q) vs. specific (P-only or Q-only) signals behind global extremes
- Look for trends and low-frequency variability in those signals

180-year reconstruction

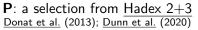
Using 20CRv3, reconstruct probabilities of extreme P/Q since 1836

Global datasets

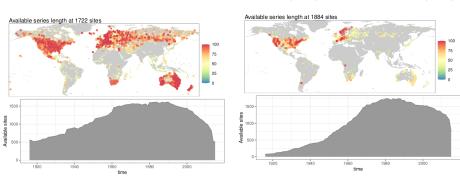
P: a selection from $\underline{\text{Hadex } 2+3}$ $\underline{\text{Donat et al.}}$ (2013); $\underline{\text{Dunn et al.}}$ (2020)



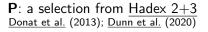
Q: a selection from <u>GSIM</u> <u>Do et al.</u> (2018); <u>Gudmundsson et al.</u> (2018)



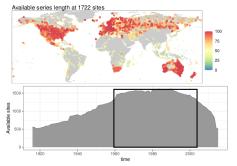
Q: a selection from <u>GSIM</u> <u>Do et al.</u> (2018); <u>Gudmundsson et al.</u> (2018)

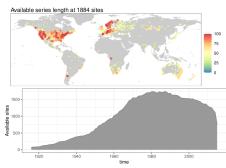


• Extract seasonal maxima at each site (SON, DJF, MAM, JJA)

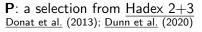


Q: a selection from <u>GSIM</u> <u>Do et al.</u> (2018); <u>Gudmundsson et al.</u> (2018)

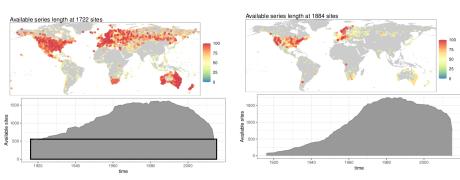




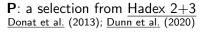
- Extract seasonal maxima at each site (SON, DJF, MAM, JJA)
- The rectangle dilemma...



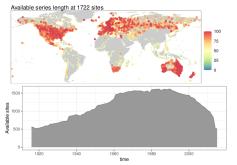
Q: a selection from <u>GSIM</u> <u>Do et al.</u> (2018); <u>Gudmundsson et al.</u> (2018)

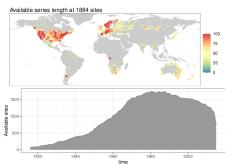


- Extract seasonal maxima at each site (SON, DJF, MAM, JJA)
- The rectangle dilemma...



Q: a selection from <u>GSIM</u> <u>Do et al.</u> (2018); <u>Gudmundsson et al.</u> (2018)





- Extract seasonal maxima at each site (SON, DJF, MAM, JJA)
- The rectangle dilemma...
- In this work, we'll use all data available during 1916-2015

After suitable data transformation...

$$\begin{cases} \mathbb{E}[P(s,t)] = \\ \mathbb{E}[Q(s,t)] = \end{cases}$$

Legend: varies in space and time

After suitable data transformation...

$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) \\ \\ \mathbb{E}[Q(s,t)] = c_Q(s) \\ \\ \text{constant (intercept)} \end{cases}$$

Legend: varies in space and time; varies in space

After suitable data transformation...

$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) + \lambda_P(s)\tau(t) \\ \mathbb{E}[Q(s,t)] = c_Q(s) + \lambda_Q(s)\tau(t) \end{cases}$$

After suitable data transformation...

$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) + \lambda_P(s)\tau(t) \\ \\ \mathbb{E}[Q(s,t)] = c_Q(s) + \lambda_Q(s)\tau(t) \\ \\ \text{the $\underline{\sf SAME}$ covariate τ affects both P and Q} \end{cases}$$

$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) + \lambda_P(s)\tau(t) + \pi(s)\delta(t) \\ \mathbb{E}[Q(s,t)] = c_Q(s) + \lambda_Q(s)\tau(t) + \theta(s)\omega(t) \end{cases}$$

$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) + \lambda_P(s)\tau(t) + \pi(s)\delta(t) \\ \mathbb{E}[Q(s,t)] = c_Q(s) + \lambda_Q(s)\tau(t) + \theta(s)\omega(t) \end{cases}$$
 Q-specific covariate and its effects

Legend: varies in space and time; varies in space; varies in time

$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) + \lambda_P(s)\tau(t) + \pi(s)\delta(t) \\ \mathbb{E}[Q(s,t)] = c_Q(s) + \lambda_Q(s)\tau(t) + \theta(s)\omega(t) \end{cases}$$

Legend: varies in space and time; varies in space; varies in time

All covariates are considered unknown and are estimated
 → Hidden Climate Indices (HCI)

$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) + \lambda_P(s)\tau(t) + \pi(s)\delta(t) \\ \mathbb{E}[Q(s,t)] = c_Q(s) + \lambda_Q(s)\tau(t) + \theta(s)\omega(t) \end{cases}$$

Legend: varies in space and time; varies in space; varies in time

- All covariates are considered unknown and are estimated
 → Hidden Climate Indices (HCI)
- $\tau(t) \sim \mathsf{AR}(1) + \mathsf{trend}$.

$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) + \lambda_P(s)\tau(t) + \pi(s)\delta(t) \\ \mathbb{E}[Q(s,t)] = c_Q(s) + \lambda_Q(s)\tau(t) + \theta(s)\omega(t) \end{cases}$$

- All covariates are considered unknown and are estimated
 → Hidden Climate Indices (HCI)
- ullet $au(t)\sim \mathsf{AR}(1)+\mathsf{trend}.$ Same for $\delta(t)$ and $\omega(t)$

$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) + \lambda_P(s)\tau(t) + \pi(s)\delta(t) \\ \mathbb{E}[Q(s,t)] = c_Q(s) + \lambda_Q(s)\tau(t) + \theta(s)\omega(t) \end{cases}$$

- All covariates are considered unknown and are estimated
 → Hidden Climate Indices (HCI)
- ullet $au(t) \sim \mathsf{AR}(1) + \mathsf{trend}$. Same for $\delta(t)$ and $\omega(t)$
- $\lambda(s) \sim$ Spatial Gaussian Process. Same for others

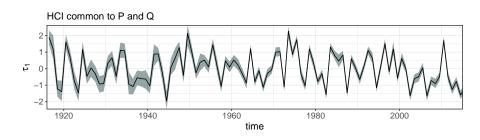
$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) + \lambda_P(s)\tau(t) + \pi(s)\delta(t) + \text{more components...} \\ \mathbb{E}[Q(s,t)] = c_Q(s) + \lambda_Q(s)\tau(t) + \theta(s)\omega(t) + \text{more components...} \\ & \text{one component} \end{cases}$$

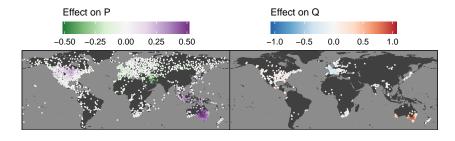
Legend: varies in space and time; varies in space; varies in time

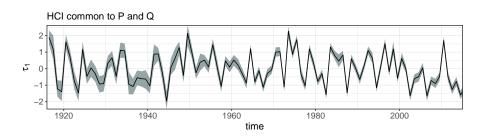
- All covariates are considered unknown and are estimated
 → Hidden Climate Indices (HCI)
- ullet $au(t) \sim \mathsf{AR}(1) + \mathsf{trend}.$ Same for $\delta(t)$ and $\omega(t)$
- $\lambda(s) \sim$ Spatial Gaussian Process. Same for others
- ullet One component not enough at the global scale ightarrow 5 used here

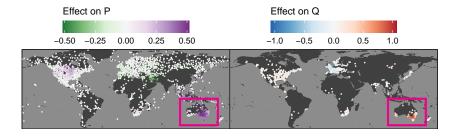
$$\begin{cases} \mathbb{E}[P(s,t)] = c_P(s) + \lambda_P(s)\tau(t) + \pi(s)\delta(t) + \text{more components...} \\ \mathbb{E}[Q(s,t)] = c_Q(s) + \lambda_Q(s)\tau(t) + \theta(s)\omega(t) + \text{more components...} \end{cases}$$

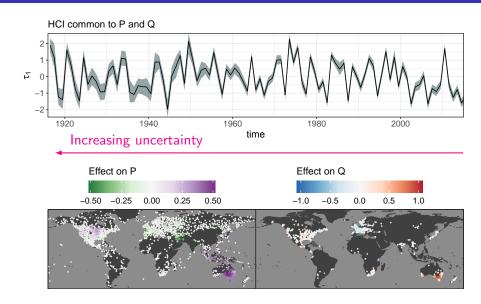
- All covariates are considered unknown and are estimated
 → Hidden Climate Indices (HCI)
- ullet $au(t) \sim \mathsf{AR}(1) + \mathsf{trend}.$ Same for $\delta(t)$ and $\omega(t)$
- $\lambda(s) \sim$ Spatial Gaussian Process. Same for others
- ullet One component not enough at the global scale ightarrow 5 used here
- (Bayesian + MCMC) estimation

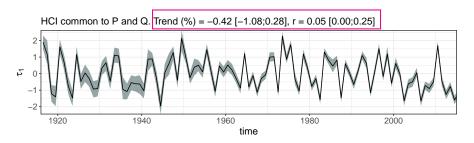


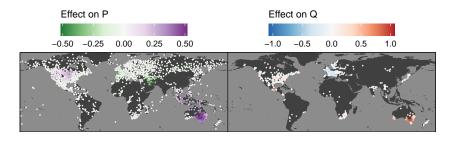


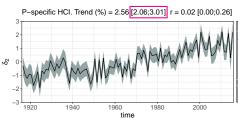


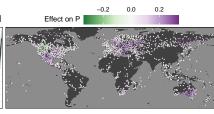


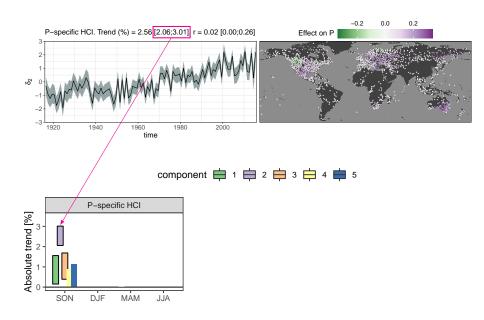


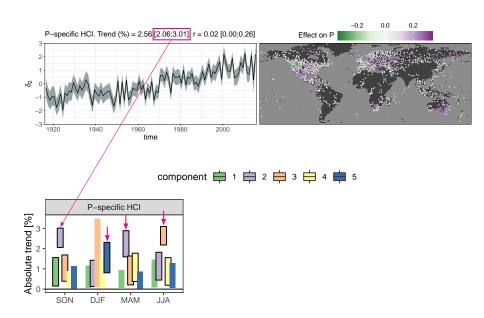


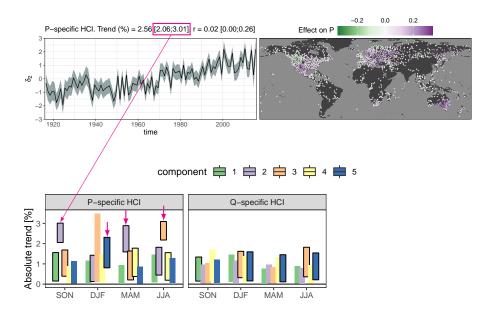


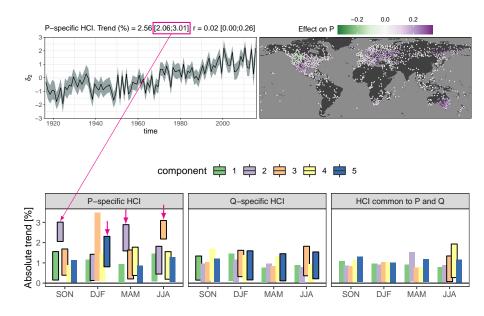


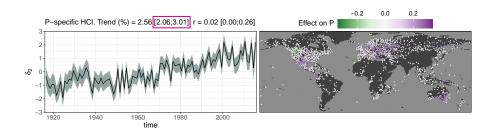


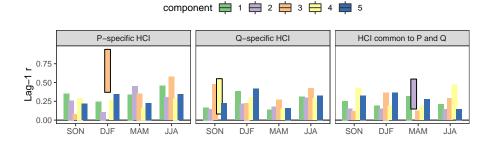




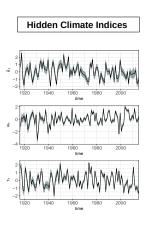




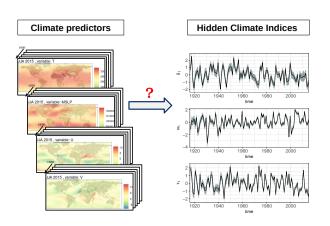




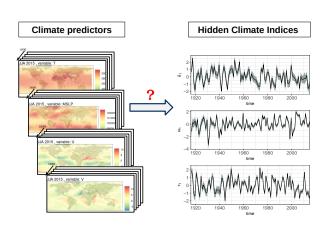
180-year reconstruction



180-year reconstruction

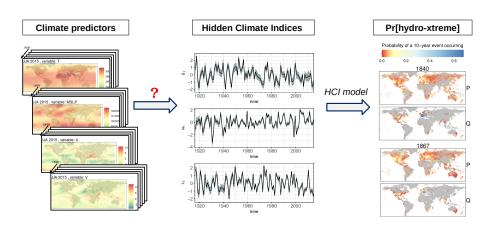


180-year reconstruction



- → Using 20CRv3, reconstruction of HCIs from 1836
- → Hydro-extreme probability maps from 1836

180-year reconstruction



- → Using 20CRv3, reconstruction of HCIs from 1836
- ightarrow Hydro-extreme probability maps from 1836

Thank you!

Renard & Thyer (2019). Revealing Hidden Climate Indices from the Occurrence of Hydrologic Extremes. Water Resources Research.

Renard et al. (2021). A Hidden Climate Indices Modeling Framework for Multi-Variable Space-Time Data. Water Resources Research.

https://globxblog.inrae.fr/

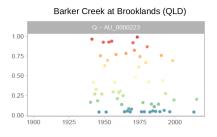
https://github.com/STooDs-tools

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 835496

Analyzed variables

Non-exceedance probability (\Leftrightarrow return period) of the largest event of the season

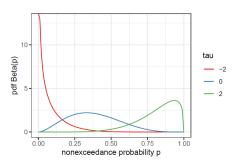
Example: Maximum streamflow in December-January-February for 2 Australian stations



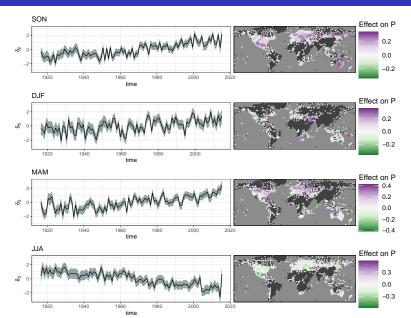


Beta distribution reparameterized in terms of mean μ and precision γ

$$\begin{cases} P(s,t) \sim \textit{Beta}(\mu_P(s,t), \gamma_P(s)); Q(s,t) \sim \textit{Beta}(\mu_Q(s,t), \gamma_Q(s)) \\ \textit{logit}(\mu_P(s,t)) = \lambda_{P,0}(s) + \sum\limits_{k=1}^K \lambda_{P,k}(s)\tau_k(t) + \sum\limits_{k=1}^K \pi_k(s)\delta_k(t) \\ \textit{logit}(\mu_Q(s,t)) = \lambda_{Q,0}(s) + \sum\limits_{k=1}^K \lambda_{Q,k}(s)\tau_k(t) + \sum\limits_{k=1}^K \theta_k(s)\omega_k(t) \end{cases}$$

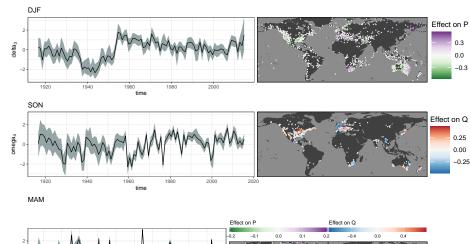


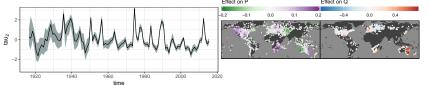
P-specific HCIs with large trends



12/9

HCIs with notable autocorrelation





Downscaling approach

Method: inverted regression

Step 1: w(s,t): climate field at time t and location s

 $\widehat{\tau}_k(t)$: estimated HCI's (from previous analysis)

Goal: estimate $\psi_k(s)$'s in:

$$w(s,t) = \psi_0(s) + \psi_1(s)\widehat{\tau}_1(t) + \ldots + \psi_K(s)\widehat{\tau}_K(t) + \varepsilon(s,t)$$

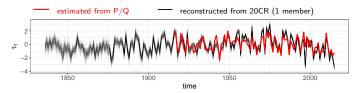
Step 2: $w(s, t^*)$: climate field at time t^* and location s

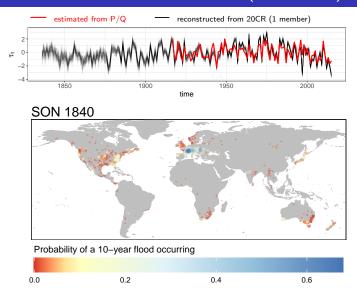
 $\widehat{\psi}_k(s)$: estimated from previous step

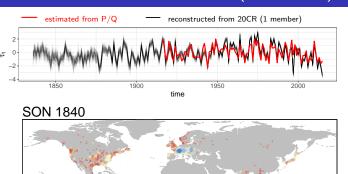
Goal: estimate $\tau_k(t^*)$'s in:

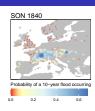
$$w(s,t^*) = \psi_0(s) + \widehat{\psi}_1(s)\tau_1(t^*) + \ldots + \widehat{\psi}_K(s)\tau_K(t^*) + \varepsilon(s,t^*)$$

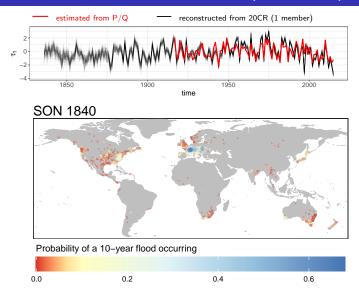
Alternatives: LASSO, RIDGE and other form of penalised regression, but first attempts inconclusive

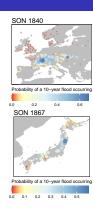


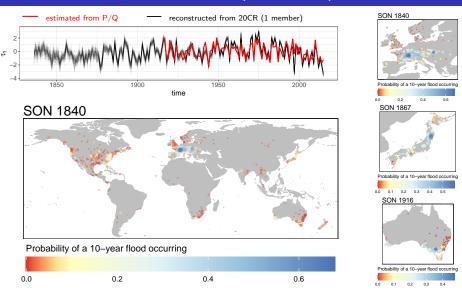


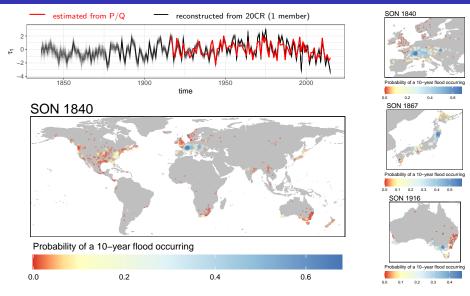












 \rightarrow **Reliability**: good (cross-validation); **Sharpness**: poor (P) to good (Q)