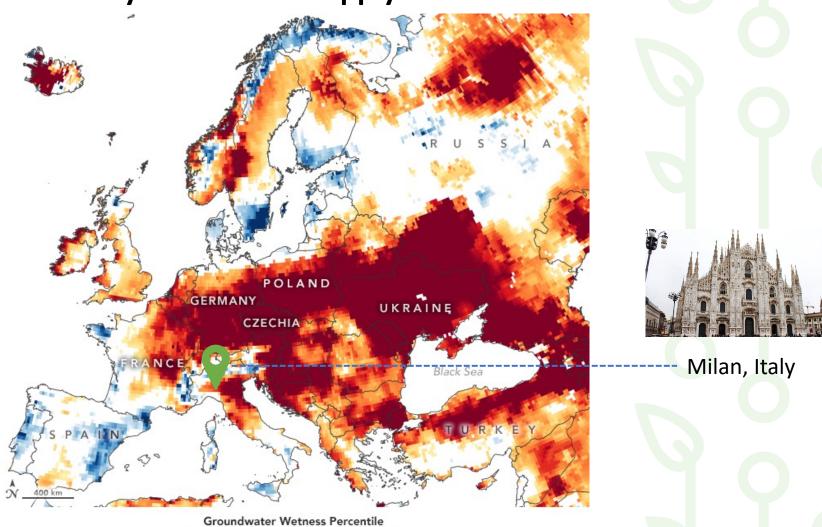


Multi-scale Modelling of Urban Water Demand under Urban Development and Societal Uncertainties: The Case Study of Milan, Italy

Wenjin Hao, Andrea Cominola, Andrea Castelletti

25.05.2022, HS 5.11

Background: Urban water scarcity has emerged as one key problem in sustainable water management and demand-side management is regarded as a key complementary measure to supply-side interventions



Source: NASA, June 2020

70 80 90 95 98

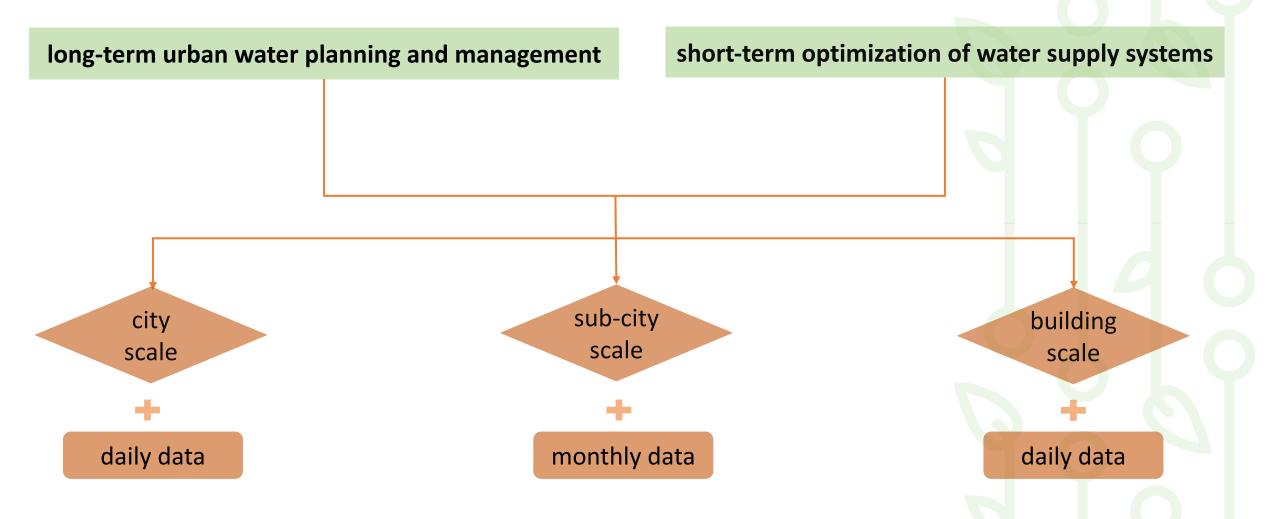
Case study: Urban water demand in Milan, Italy

- Municipal water is 100% from groundwater
- 28 pump stations are activated and serve in total more than
 50, 000 water users
- Smart meters have been used to monitor water consumption at the building level

Methodology

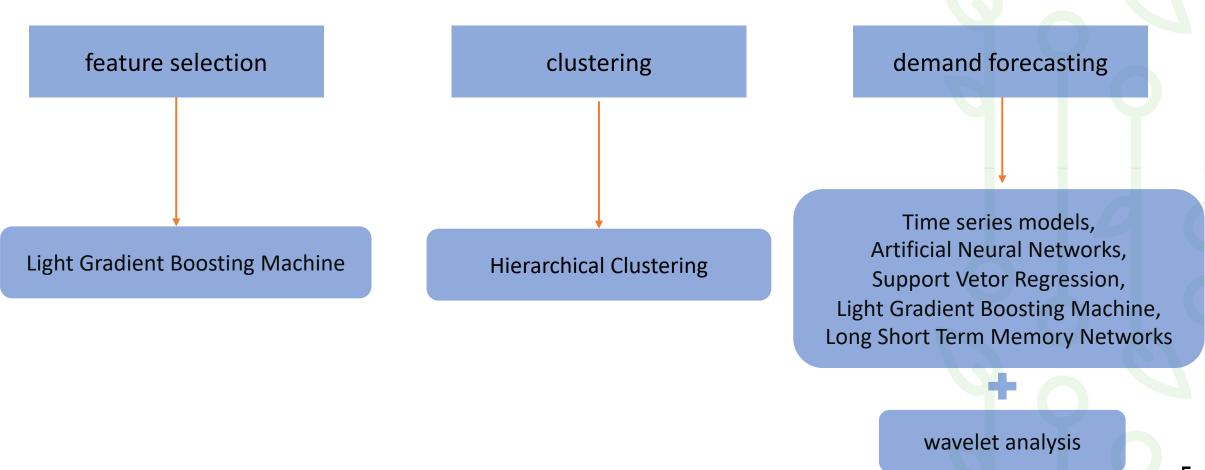
ENVIRONMENTAL INTELLIGENCE LAB

- Descriptive modelling of water use change across scales
- Predictive modelling of water demand



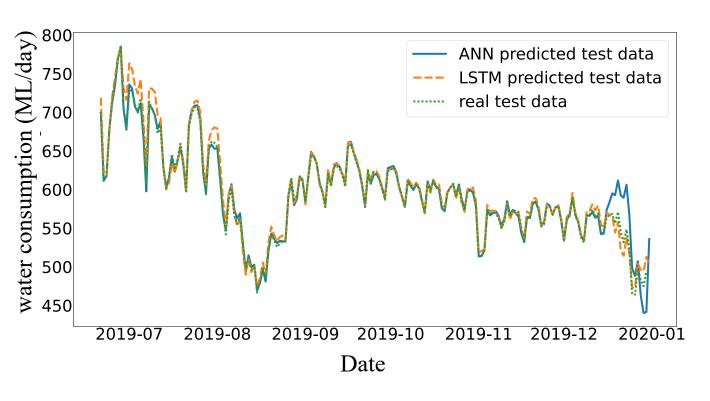
Methodology

- Descriptive modelling of water use change across scales
- Predictive modelling of water demand



CITY SCALE + DAILY DATA (2017-2019)

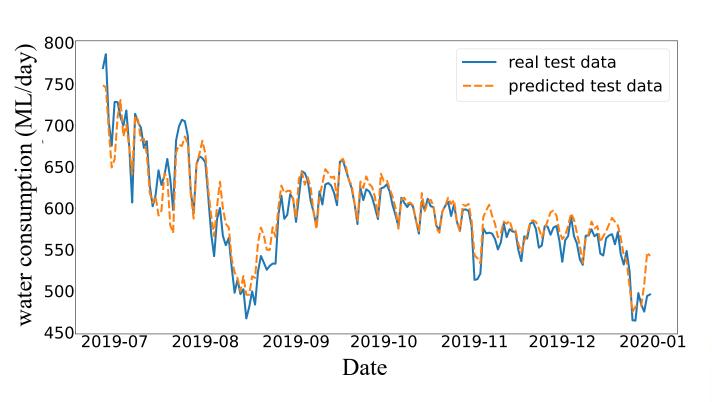
Results of 1 day-ahead prediction on daily water consumption in 2017-2019 show the avantage of hybrid wavelet decomposition machine learning models



Models	RMSE(ML)	MAE(ML)	MAPE(%)	R^2			
Training Phase							
SARIMAX	19.285	13.716	2.3	0.828			
SVR	18.101	14.025	2.3	0.837			
ANN	15.126	10.990	1.8	0.886			
LightGBM	8.629	6.516	1.1	0.963			
LSTM	10.373	6.274	1.1	0.947			
WA-SVR	16.435	13.895	2.3	0.873			
WA-ANN	2.556	1.927	0.3	0.997			
WA-LightGBM	2.627	2.032	0.3	0.997			
WA-LSTM	4.666	3.158	0.5	0.990			
	Tes	t Phase					
SARIMAX	15.460	11.284	1.9	0.906			
SVR	19.546	14.747	2.5	0.896			
ANN	18.058	13.273	2.3	0.911			
LightGBM	20.524	14.510	2.5	0.885			
LSTM	24.942	17.630	3.0	0.810			
WA-SVR	20.721	14.193	2.4	0.886			
WA-ANN	10.913	4.874	0.9	0.968			
WA-LightGBM	16.637	12.038	2.1	0.926			
WA-LSTM	9.596	6.300	1.0	0.974			
ADDIAG CUI	A ATAT 1 T	LICIDIA	11				

SARIMAX, SVR, ANN, and LightGBM models used original selected tabular data for calibration and validation, while LSTM used original time series data for calibration and validation; WA-SVR, WA-ANN and WA-LightGBM used selected wavelet-decomposed tabular data for calibration and validation, while WA-LSTM used selected wavelet-decomposed time series data for calibration and validation.

Hybrid LSTM model shows promising results on 7 days-ahead prediction on daily water consumption in 2017-2019

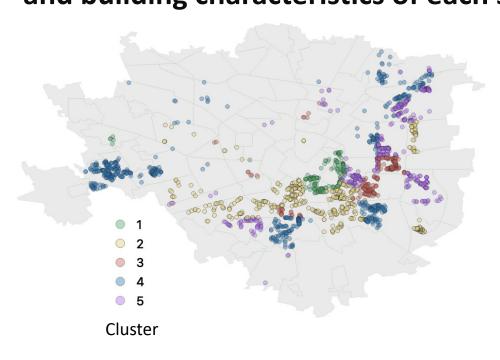


Models	RMSE(ML)	MAE(ML)	MAPE(%)	R^2			
Training Phase							
SARIMAX	32.947	23.663	4.0	0.492			
SVR	21.228	16.792	2.8	0.776			
ANN	21.841	16.060	2.7	0.763			
LightGBM	14.042	10.586	1.8	0.902			
LSTM	12.841	7.058	1.2	0.919			
WA-SVR	13.110	10.195	1.7	0.919			
WA-ANN	11.652	8.818	1.5	0.936			
WA-LightGBM	7.209	5.487	0.9	0.975			
WA-LSTM	7.701	5.396	0.9	0.972			
Test Phase							
SARIMAX	34.391	24.969	4.3	0.526			
SVR	29.561	21.784	3.7	0.763			
ANN	30.672	22.292	3.8	0.745			
LightGBM	31.326	22.699	3.9	0.734			
LSTM	45.802	34.152	5.9	0.439			
WA-SVR	31.854	16.080	2.9	0.730			
WA-ANN	28.362	14.829	2.6	0.786			
WA-LightGBM	29.538	20.737	3.6	0.773			
WA-LSTM	18.374	13.777	2.4	0.900			

SARIMAX, SVR, ANN, and LightGBM models used original selected tabular data for calibration and validation, while LSTM used original time series data for calibration and validation; WA-SVR, WA-ANN and WA-LightGBM used selected wavelet-decomposed tabular data for calibration and validation, while WA-LSTM used selected wavelet-decomposed time series data for calibration and validation.

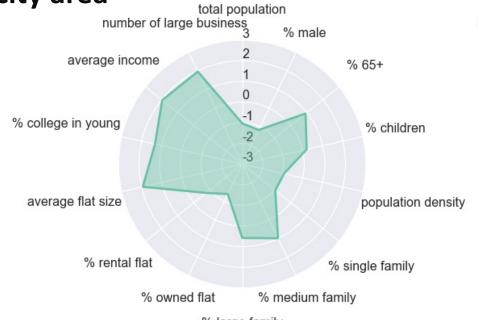
BUILDING SCALE + DAILY DATA (2019-2021)

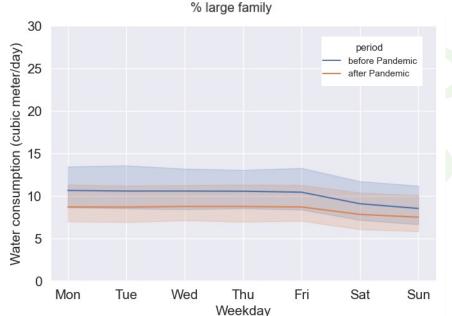
Hierarchical clustering identifies 5 clusters based on social-demographic and building characteristics of each sub-city area



Representative characteristics of cluster 1:

- multi and large family, elder people
- high income, highly educated
- owned and big dwellings
- less population, low density
- commercial area





Take home messages

- Urban water demands change differently under the various socio-demographic, economic and building features contexts
- Machine learning/deep learning and advanced data mining tools can contribute to identification of urban water demand change and prediction of future water demand to inform management strategies
- We also acknowledge the challenges of generalization of the data-driven analysis experience due to the case-specific characteristics and quality of data

THANK YOU!

Wenjin Hao Politecnico di Milano wenjin.hao@polimi.it

Andrea Cominola Technische Universität Berlin Einstein Center Digital Future andrea.cominola@tu-berlin.de

Andrea Castelletti Politecnico di Milano, andrea.castelletti@polimi.it

https://www.ei.deib.polimi.it/ https://www.nextwatergovernance.net/

Acknowledgments: Data is provided by Metropolitana Milanese (MM) S.p.A.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 861509

