

S-wave velocity profile of an Antarctic ice stream <u>firn</u> layer with <u>ambient seismic</u> recording using <u>Distributed Acoustic Sensing</u>

¹University of Bristol, ²University of Oxford, ³British Antarctic Survey (BAS)

⁴Delft University of Technology

Introduction: Antarctica dataset

Rutford Ice Stream

~400 m/y flow rate

Little topography

 DAS (linear and triangular) + geophone array

Linear DAS + active shots at Rutford Ice Stream:

Hammer source

To verify the noise approach.

Linear DAS + passive at Rutford Ice Stream. anthropogenic noise

Anthropogenic noise

Passively recorded 5 days

Petro generator

'Traffic' noise

Linear DAS + passive at Rutford Ice Stream. crevassing events

Surface wave transient signal
No clear body waves
→ Shallow events

Forming of crevasses (Julian Spergel 2017)

Events distribution

Linear DAS + Noise interferometry (cross

correlation)

Using a geophone as a virtual source:

Breaks the coherent instrument noise

Selectively stack CCs:

Focus on the desirable seismic phases

Linear DAS + Surface wave inversion

- Rayleigh 0 mode is extracted from 3 to 50 Hz
- S velocity (Vs) is inverted from dispersion measurements Velocit
- Critical density changes in the firn are visible as 'kinks' on the Vs profile

Triangular DAS + Is the firn seismically isotropy?

- Comparing dispersion curves from two directions.
- No signature of transverse crevasses, but maybe
 - --> the forming of longitudinal crevasses? Or just apparent velocity?

Take home messages

- >A high-resolution S-wave velocity profile can be derived from the surface wave inversion.
- >Seismic anisotropy of firn is investigated with a triangular array, we see no signature of transverse crevasse.
- Cross-correlation (CC) between a geophone or a seismometer and DAS channels (hybrid instrument CC), improves the quality of DAS CCs.
- >Selectively stacking CC panels improves the convergence of (DAS) CCs.

Preprint of this study: https://doi.org/10.1002/essoar.10510377.1

Questions?

- Does it make sense to correlate vertical component geophone with DAS that is mainly sensitive to horizontal strain?
 - The seismic signal retrieved is dominantly Rayleigh wave.

• The correlation between geophone and DAS, which means between particle motion and strain, does produce a phase shift.