Cross-Country Risk Quantification of Extreme Wildfires in Mediterranean Europe

Sarah Meier¹ Eric Strobl² Robert J.R. Elliott¹ Nicholas Kettridge¹

¹University of Birmingham, United Kingdom

²University of Bern, Switzerland

EGU General Assembly 23-27 May 2022

Background

Figure 1: Destruction after 2018 fire in Mati, Greece (source: REUTERS)

Wildfires can lead to extensive environmental and socioeconomic impacts

- Individuals/Communities
- Properties/Infrastructure
- Ecosystems

Background

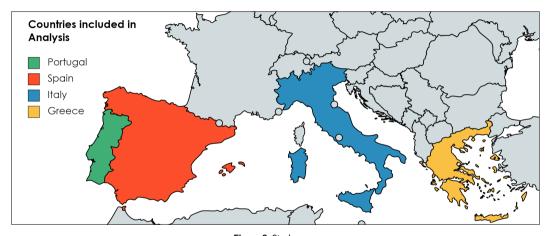
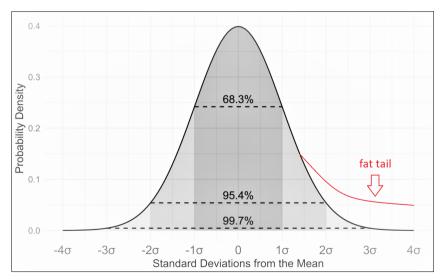


Figure 2: Study area.

Background


Terminology

Wildfire: Uncontrolled fire that burns wildland vegetation such as forests, grasslands, savannas or other ecosystems.

- Beneficial ecosystem functions
- Utilized by communities
 - agricultural practices
 - landscape modification
- Societies and ecosystems adapt to near-normal conditions
- ⇒ Extremes cause the bulk of impacts (Strauss et al., 1989; Gill and Allan, 2008; Evin et al., 2018)

Methodology

Figure 3: Normal distribution.

Methodology

- Extreme Value Theory (EVT)
 - Specifically designed to model events in fat-tailed distributions
 - Suitable inferential tool (Holmes et al., 2008; Hernandez et al., 2015)
 - Globally applied e.g., Keyser and Westerling (2019); Jiang and Zhuang (2011)
- Point Process characterization
 - Occurrence and rate of exceedance
 - Above high threshold

Extremal Types Theorem

The maximum of a large number of i.i.d. random variables is distributed like one of the three limit type distributions **Gumbel**, **Fréchet** or **Weibull** independently of the parent distribution.

Data

- EFFIS burned area spatial data product
 - Primary source of harmonised data
 - MODIS satellite imagery
- Link with covariates
 - Fire Weather Index
 - Population density
 - Land cover types
- 2006 2019

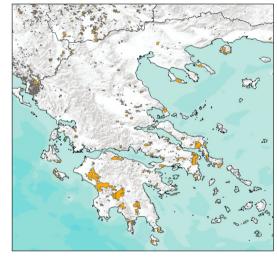


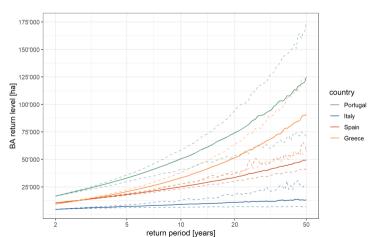
Figure 4: EFFIS burned area polygons Greece (2006-2019).

Results: Return Level Estimation

Table 1: Individual country return levels in ha for specific return periods.

country	5-year (CI)	10-year (CI)	20-year (CI)
Portugal	33'279 (30'062, 35'832)	50'338 (39'924, 58'557)	75'256 (53'038, 94'587)
Spain	18'080 (17'376, 18'822)	25'165 (23'391, 26'905)	34'017 (30'277, 39'079)
Italy	7'325 (6'149, 9'025)	8'966 (6'531, 12'842)	10'890 (6'944, 12'842)
Greece	20'687 (18'370, 22'372)	33'242 (28'298, 37'876)	51'764 (39'636, 64'261)

⇒ the T-year return level is exceeded in any year with probability 1/T

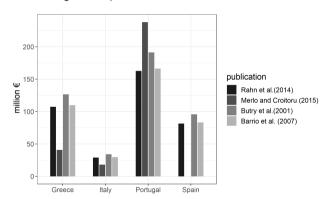

Ex. Portugal 10-year

- The probability that a wildfire burns > 50'338 ha in any given year is 10%
- ullet for >> T ightarrow 50'338 ha is exceeded, on average, once every 10 years
- "10-year event"

Results: Return Level Plots

- Cross-country risk comparison
- Limit type → more
 - Fréchet: GR, PT, ES
 - Gumbel: IT

Figure 5: All countries return level plots.



Results: Economic Valuation

 \Rightarrow Multiplication of our expected BA estimates with associated per ha monetary losses

- 4 publications→ more
 - 0115
 - Rahn et al. (2014)Butry et al. (2001)
 - Merlo and Croitoru (2005)
 - Barrio et al. (2007)
- Example 10-year event
 - Italy 18-34 million €
 - Portugal 162-230 million €

Figure 6: 10-year return level economic loss estimates.

Questions/Comments

s.meier@bham.ac.uk

Acknowledgment

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement Innovative Training Networks (ITN) No.860787

Sources

- Barrio, M., M. Loureiro, and M. L. Chas (2007): "Aproximación a las pérdidas económicas ocasionadas a corto plazo por los incendios forestales en Galicia en 2006," *Economía Agraria y Recursos Naturales*, 7, 45–64.
- Butry, D. T., D. E. Mercer, J. P. Prestemon, J. M. Pye, and T. P. Holmes (2001): "What Is the Price of Catastrophic Wildfire?" *Journal of Forestry*, 9–17.
- Evin, G., T. Curt, and N. Eckert (2018): "Has fire policy decreased the return period of the largest wildfire events in France? A Bayesian assessment based on extreme value theory," *Natural Hazards and Earth System Sciences*, 18, 2641–2651.
- Gill, A. M. and G. Allan (2008): "Large fires, fire effects and the fire-regime concept," *International Journal of Wildland Fire*, 17, 688–695.
- Hernandez, C., C. Keribin, P. Drobinski, and S. Turquety (2015): "Statistical modelling of wildfire size and intensity: A step toward meteorological forecasting of summer extreme fire risk," *Annales Geophysicae*, 33, 1495–1506.
- Holmes, T. P., J. P. Prestemon, and K. L. Abt (2008): An Introduction to the Economics of Forest Disturbance, Springer.
- Jiang, Y. and Q. Zhuang (2011): "Extreme value analysis of wildfires in Canadian boreal forest ecosystems," *Canadian Journal of Forest Research*, 41, 1836–1851.
- Keyser, A. R. and A. L. R. Westerling (2019): "Predicting increasing high severity area burned for three forested regions in the western United States using extreme value theory," Forest Ecology and Management, 432, 694–706.
- Merlo, M. and L. Croitoru (2005): Valuing Mediterranean Forests Towards Total Economic Value, CABI Publishing.
- Rahn, M., K. Hale, C. Brown, and T. Edwards (2014): "Economic Impacts of Wildfires: 2003 San Diego Wildfires in Retrospect," Tech. rep., San Diego State University Wildfire Research Center.
- Strauss, D., L. Bednar, and R. Mees (1989): "Do one percent of forest fires cause ninety-nine percent of the damage?" Forest Science, 35, 319–328.