

In collaboration with

Laura Ferranti & Linus Magnusson (ECMWF) Álvaro Corral (CRM)

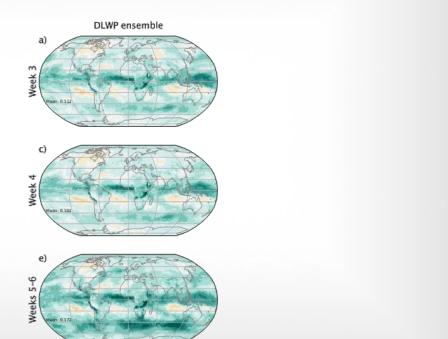
Estrella Olmedo & Antonio Turiel (ICM-CSIC)

S2S forecasts based on ML models are becoming increasingly competitive to the state-of-the-art NWP systems, for example:

S2S forecasts based on ML models are becoming increasingly competitive to the state-of-the-art NWP systems, for example:

Purely data-driven S2S models

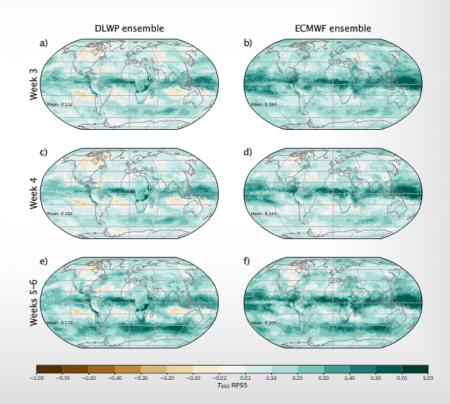
- Weyn et al. (2021) CNN
- Pathak et al (2022) GNN



S2S forecasts based on ML models are becoming increasingly competitive to the state-of-the-art NWP systems, for example:

Purely data-driven S2S models

- Weyn et al. (2021) CNN
- Pathak et al (2022) GNN



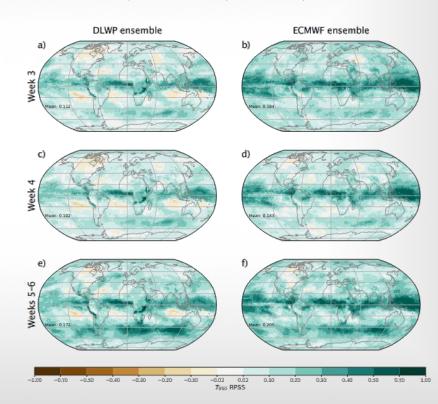
S2S forecasts based on ML models are becoming increasingly competitive to the state-of-the-art NWP systems, for example:

Purely data-driven S2S models

- Weyn et al. (2021) CNN
- Pathak et al (2022) GNN

Hybrid ("post-processing") S2S models

- Scheuerer et al. (2020) ANN, CNN
- Mouatadid et al (2021) Multi-model
- *van Straaten et al. (2022) ANN
- *Horat & Lerch (2022) CNN



S2S forecasts based on ML models are becoming increasingly competitive to the state-of-the-art NWP systems, for example:

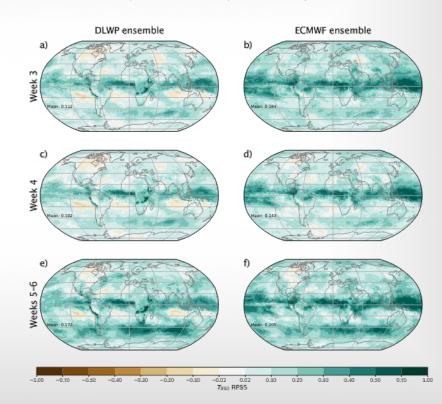
Purely data-driven S2S models

- Weyn et al. (2021) CNN
- Pathak et al (2022) GNN

Hybrid ("post-processing") S2S models

- Scheuerer et al. (2020) ANN, CNN
- Mouatadid et al (2021) Multi-model
- *van Straaten et al. (2022) ANN
- *Horat & Lerch (2022) CNN

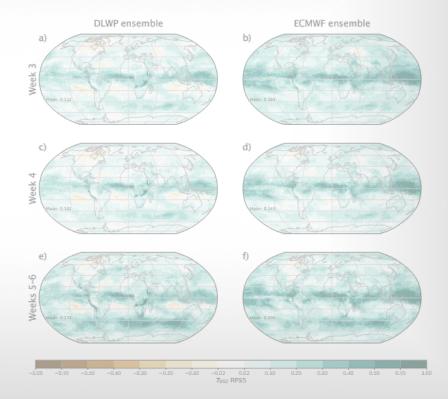
Where does the skill of NNs come from? Can we trust them?



Examining predictors via eXplainable Al

We leverage explainable techniques to provide insight into the neural networks' "reasoning" & to increase trust in the forecasts produced.

Objective: Identify large-scale patterns that provide opportunities for skillful sub-seasonal **precipitation** forecast using XAI



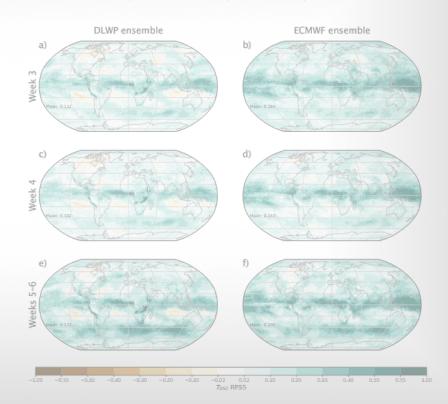
Examining predictors via eXplainable Al

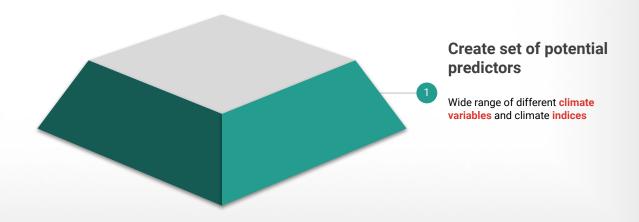
We leverage explainable techniques to provide insight into the neural networks' "reasoning" & to increase trust in the forecasts produced.

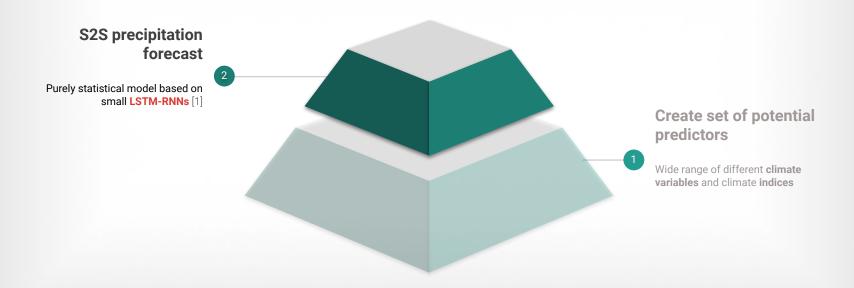
Objective: Identify large-scale patterns that provide opportunities for skillful sub-seasonal precipitation forecast using XAI

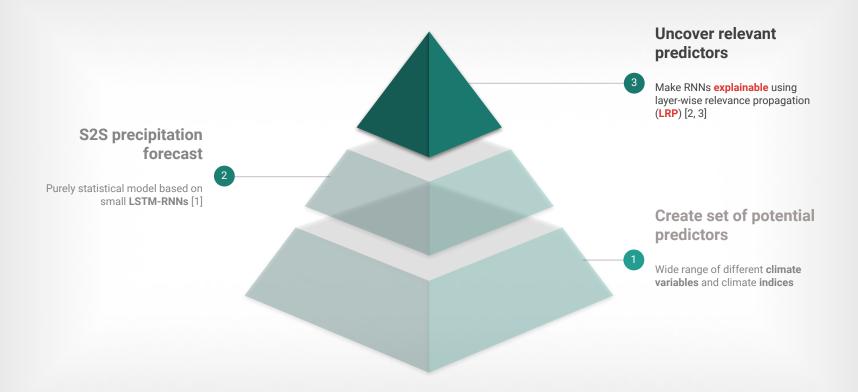
More specifically:

- 1. Which climate variables are the most important drivers?
- 2. Which regions play an important role?
- 3. At what times do these large-scale patterns exhibit predictivity?







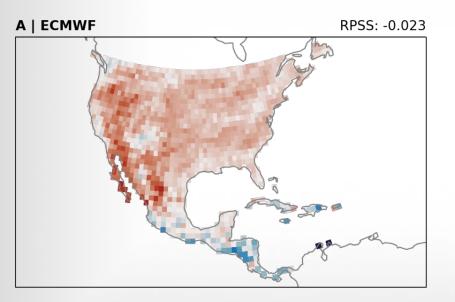


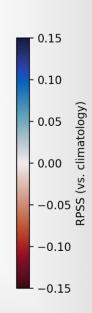
^{1.} Hochreichter, S. & Schmidhuber, J. Long short term memory. Neural Computation 9(8): 1735-1780, (1997).

^{2.} Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10, e0130140 (2015).

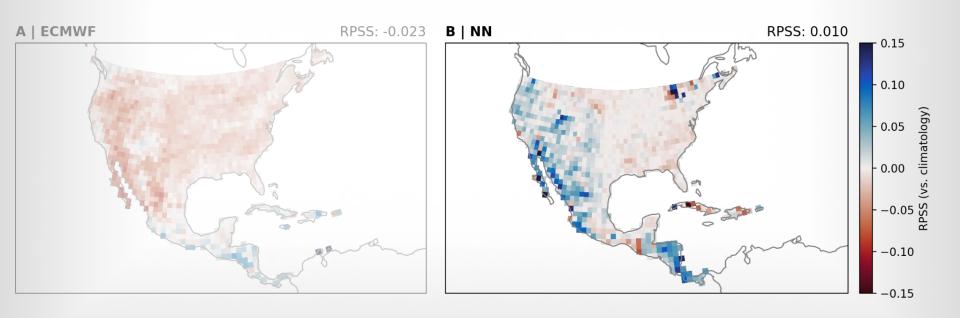
Arras, L., Montavon, G., Müller, K.-R. & Samek, W. Explaining Recurrent Neural Network Predictions in Sentiment Analysis. arXiv:1706.07206 (2017).

Forecast evaluation 2018-2021 (Week 4)

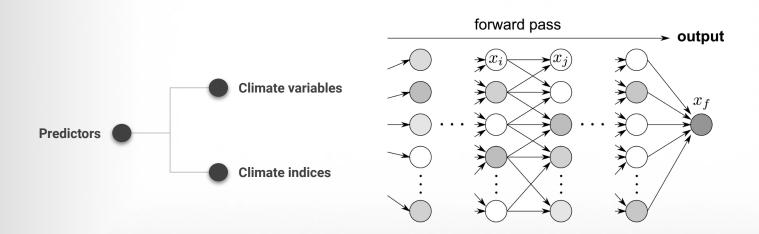




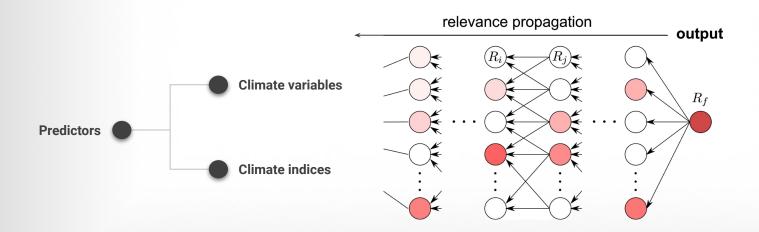
Forecast evaluation 2018-2021 (Week 4)



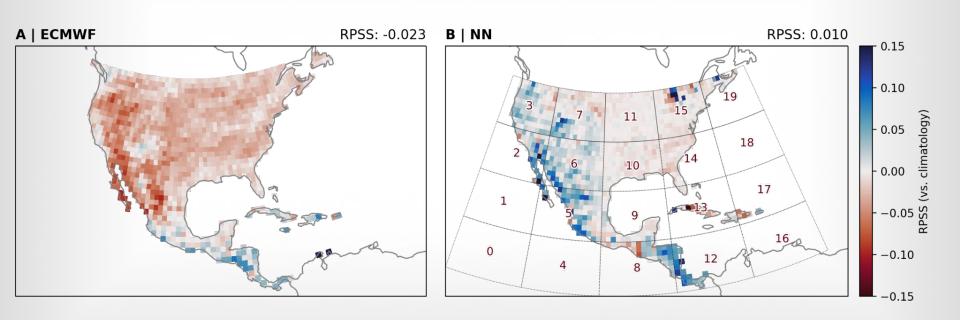
XAI: Layer-wise relevance propagation

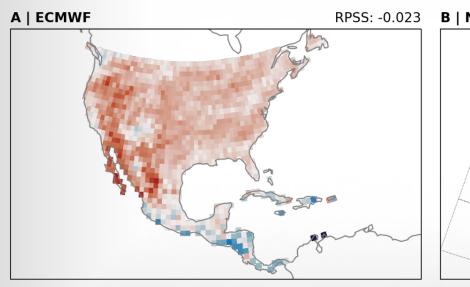


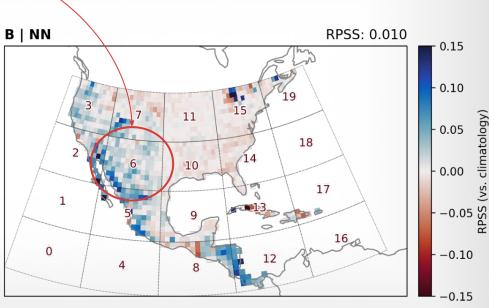
XAI: Layer-wise relevance propagation



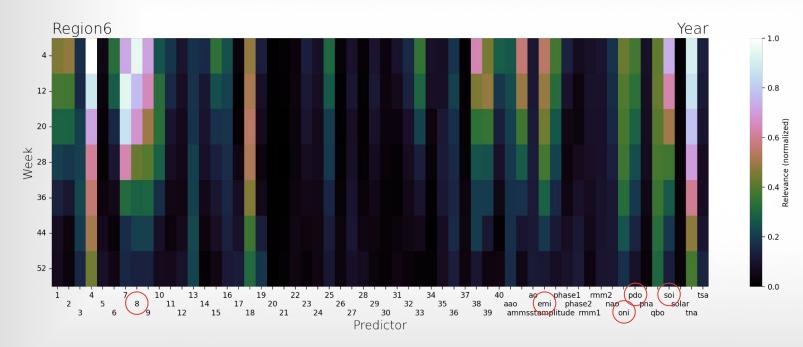
Forecast evaluation 2018-2021 (Week 4)



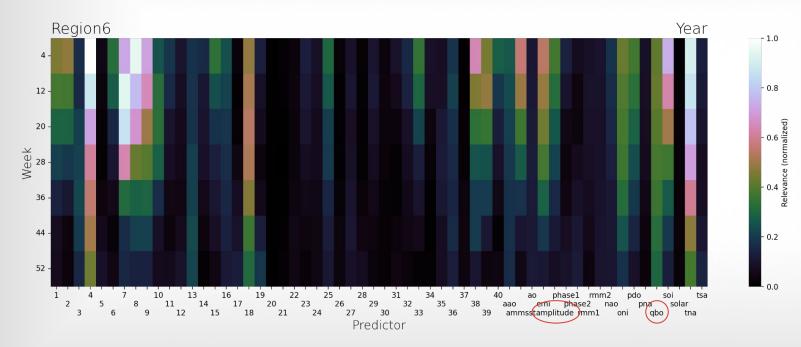




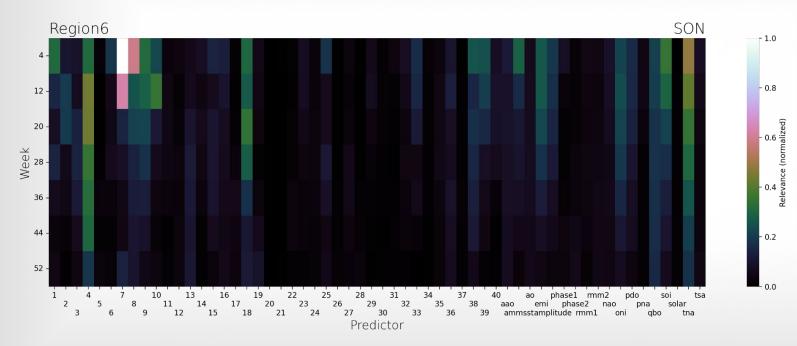
What makes the forecast skillful?

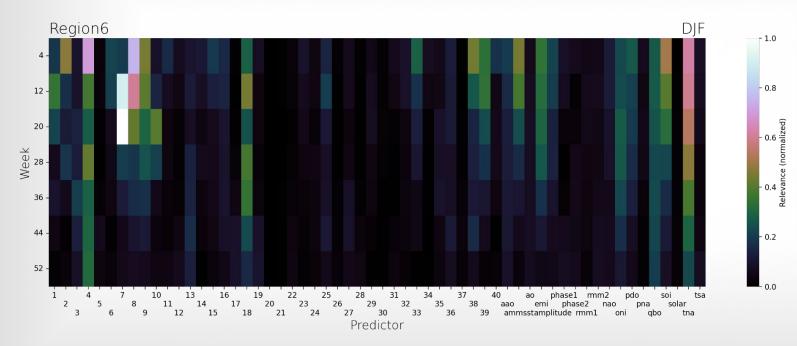


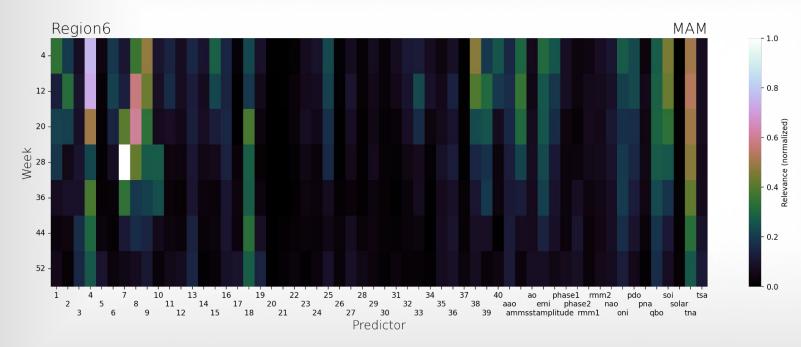
What makes the forecast skillful?

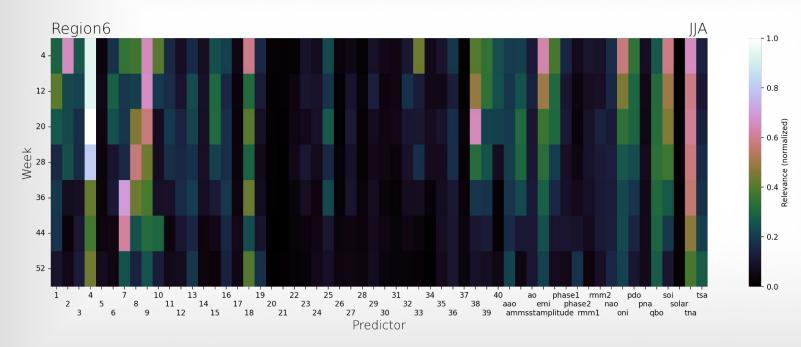


Influence of MJO & QBO has also been established recently:









The relevance of some time steps may change with season

Final thoughts

1 | Selecting predictors

- Currently: Regularized (Varimax-rotated) multivariate PCA + climate indices ⇒ final set of predictors contains redundant information
- Better: remove redundant predictors prior to analysis

2 | Prediction skill

 Moderate skill improvement compared to climatology for western North America (NA)

3 | Explainability

- Skill improvement mainly comes from persistent drought conditions over western NA due to global warming
- Other predictors: strong agreement with our current knowledge
- Relevant predictors exhibit time lags (e.g. late summer sea ice concentration in the Arctic)

You may want to check out:

EOF analysis and variants using Xarray & Dask ⇒ Python package xeofs https://github.com/nicrie/xeofs

References

Weyn, J. A., Durran, D. R., Caruana, R. & Cresswell-Clay, N. Sub-seasonal forecasting with a large ensemble of deep-learning weather prediction models. *J Adv Model Earth Syst* 13, (2021).

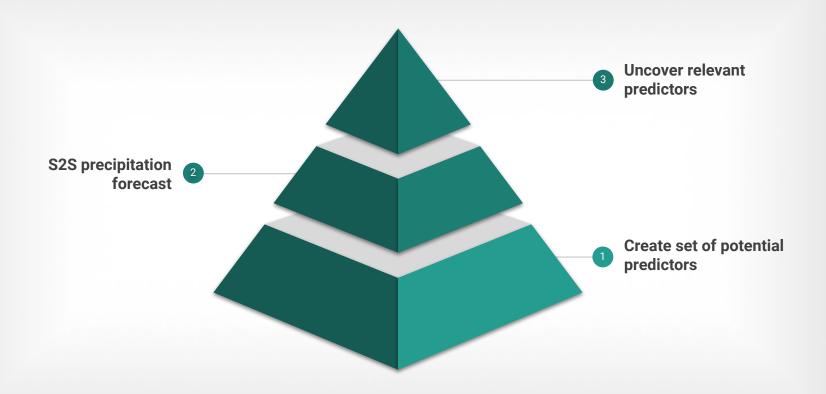
van Straaten, C., Whan, K., Coumou, D., van den Hurk, B., and Schmeits, M. Improving sub-seasonal forecasts by correcting missing teleconnections using ANN-based post-processing, *EGU General Assembly 2022*, Vienna, Austria, 23–27 May 2022, EGU22-1686, https://doi.org/10.5194/egusphere-egu22-1686 (2022). **Mouatadid**, S. *et al.* Learned Benchmarks for Subseasonal Forecasting. *arXiv:2109.10399* (2021).

Scheuerer, M., Switanek, M. B., Worsnop, R. P. & Hamill, T. M. Using Artificial Neural Networks for Generating Probabilistic Subseasonal Precipitation Forecasts over California. *Monthly Weather Review* 148, 3489–3506 (2020).

Horat, N. and Lerch, S.. Convolutional neural networks for skillful global probabilistic predictions of temperature and precipitation on sub-seasonal time-scales, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-920, https://doi.org/10.5194/egusphere-egu22-920, (2022).

Pathak, J. et al. FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators. (2022).

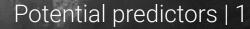
Additional slides

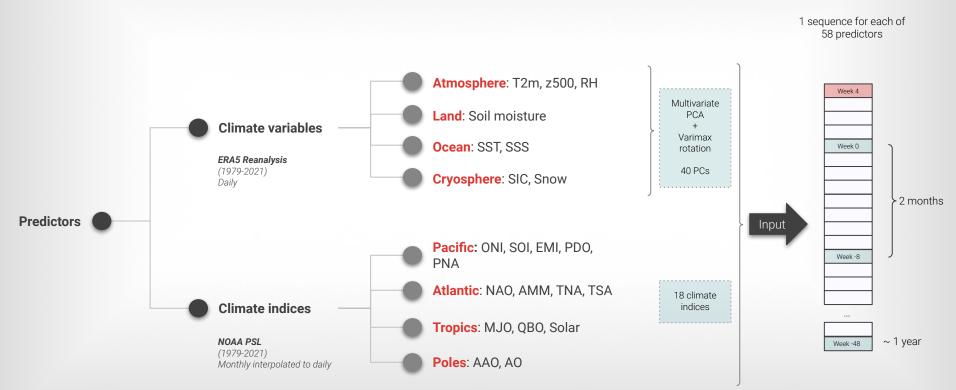


^{1.} Hochreichter, S. & Schmidhuber, J. Long short term memory. Neural Computation 9(8): 1735-1780, (1997).

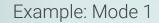
^{2.} Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10, e0130140 (2015).

Arras, L., Montavon, G., Müller, K.-R. & Samek, W. Explaining Recurrent Neural Network Predictions in Sentiment Analysis. arXiv:1706.07206 (2017).

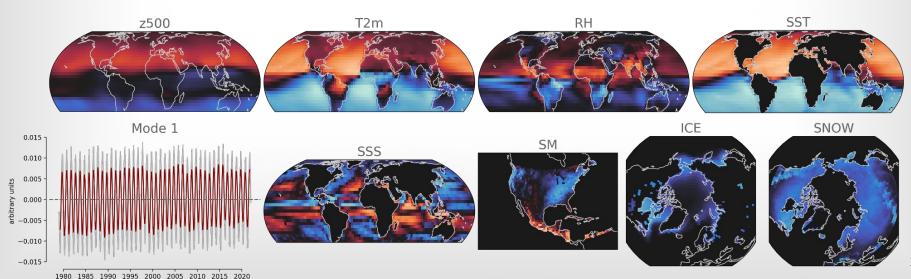




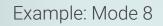
Multivariate PCA + Varimax rotation



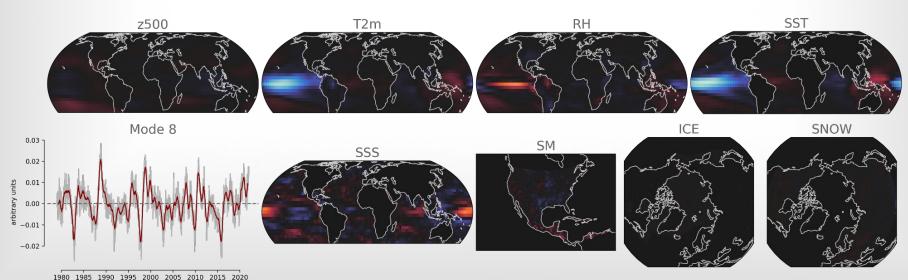
Seasonal cycle



Multivariate PCA + Varimax rotation



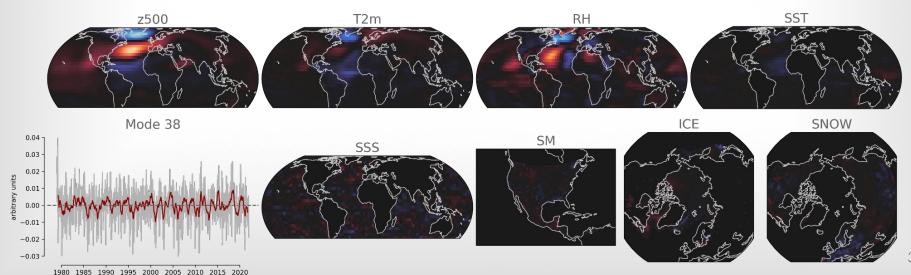
ENSO (EP)



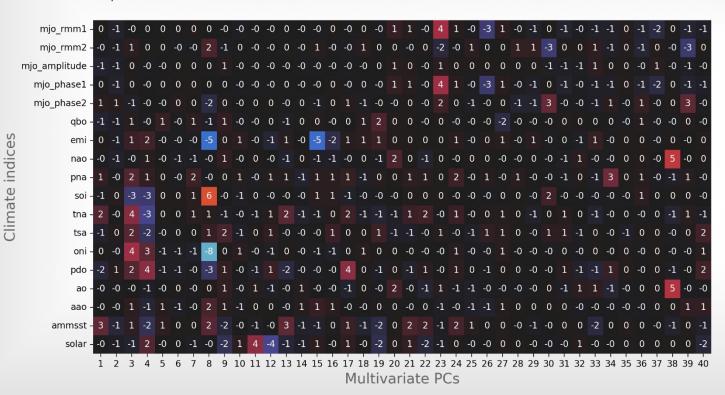
Multivariate PCA + Varimax rotation

Example: Mode 38

NAO-like



Spearman correlation matrix

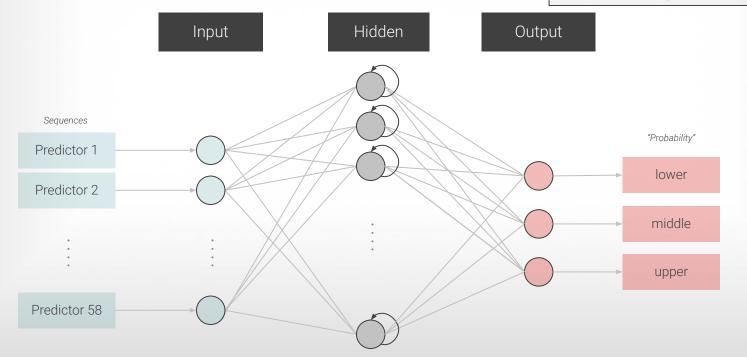


LSTM-RNN model | 2

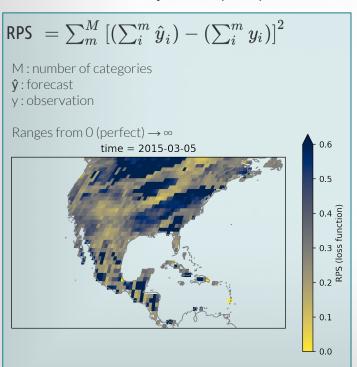
Architecture

Architecture details

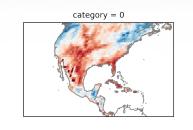
- 128 neurons
- LSTM cells
- Recurrent dropout: 0.5
- Activation: Sigmoid
- Learning rate: 1e-4
 - Batch size: 16 Training: 1 epoch

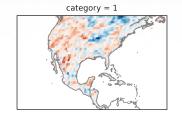


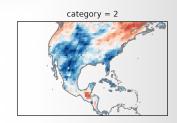
Ranked Probability Score (RPS)



Forecast ŷ

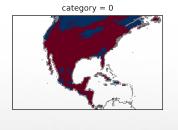




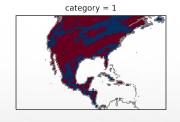


Observation y

0.0



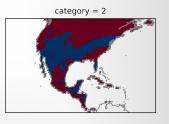
0.2



Observed "probability"

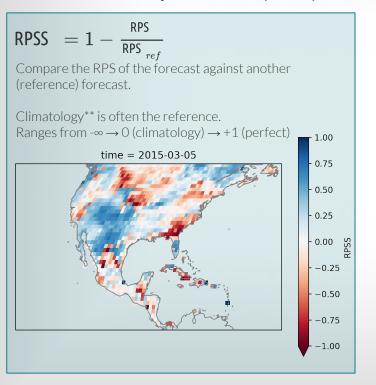
0.6

0.4

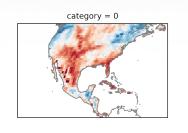


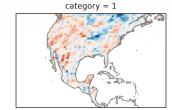
0.8

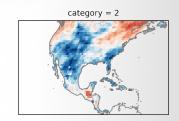
Ranked Probability Skill Score (RPSS)



Forecast ŷ

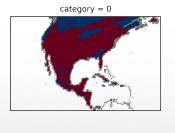




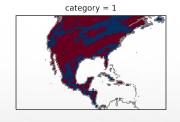


Observation y

0.0



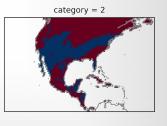
0.2



Observed "probability"

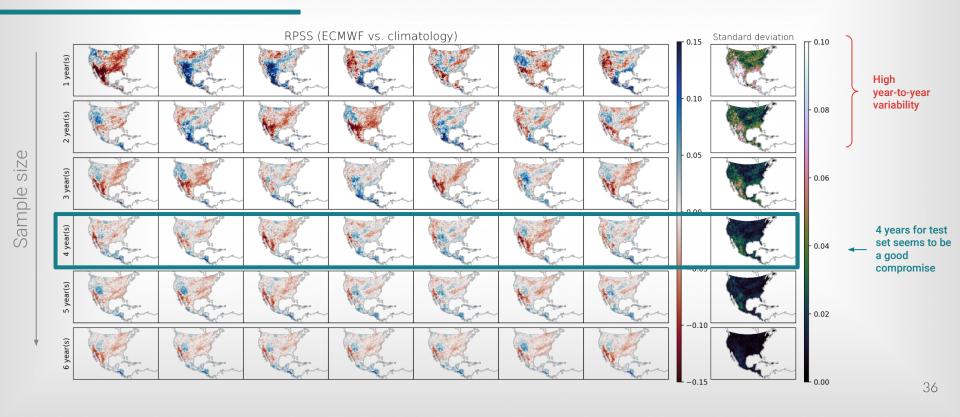
0.6

0.4

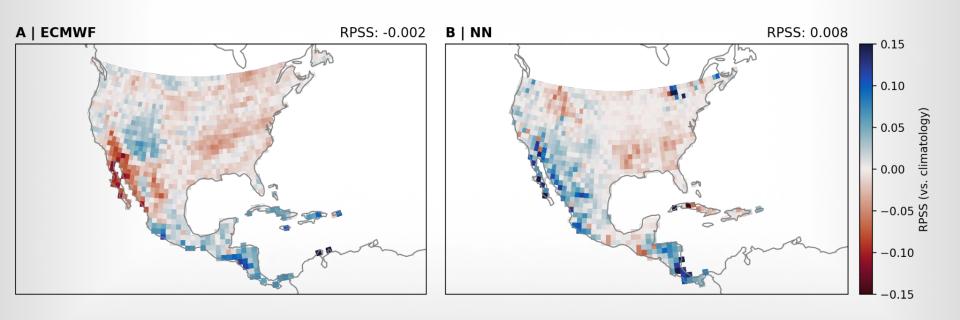


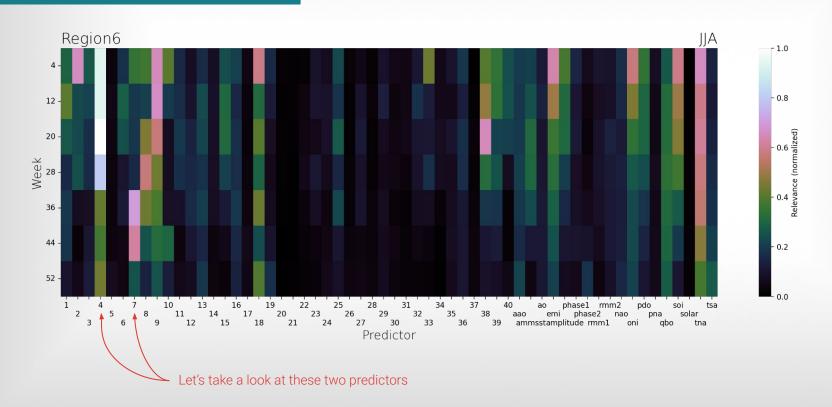
0.8

Effect of sample size on RPSS



Forecast evaluation 2018-2021 (Week 3)

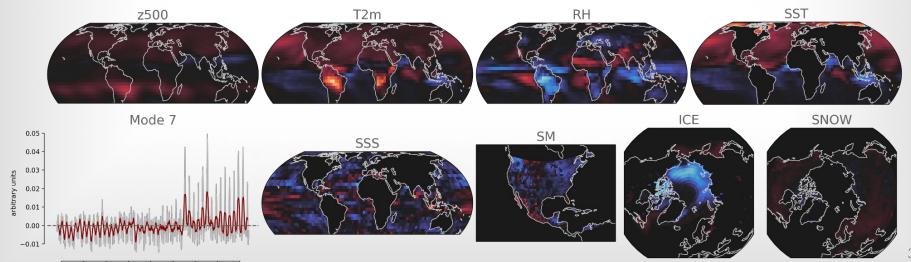




Mode 7

- characterized by seasonality
- state of late summer provides predictive information
- related to sea ice extent, T2m, RH and SST

1980 1985 1990 1995 2000 2005 2010 2015 2020



Mode 4

- important for JJA forecasts
- describes a reduction of RH, SM and SSS off the west coast of North America
- associated to current drought conditions in western North America?

