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Motivation

S2S forecasts based on ML models are becoming increasingly 
competitive to the state-of-the-art NWP systems, for example:

Purely data-driven S2S models

- Weyn et al. (2021) – CNN
- Pathak et al (2022) – GNN

Hybrid (“post-processing”) S2S models

- Scheuerer et al. (2020) – ANN, CNN
- Mouatadid et al (2021) – Multi-model
- *van Straaten et al. (2022) – ANN
- *Horat & Lerch (2022) – CNN

Where does the skill of NNs come from? Can we trust them?

S2S & Machine Learning Example: RPSS for temperature (Weyn et al. 2020)

* also in this session
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Objective

We leverage explainable techniques to provide insight into the neural 
networks’ “reasoning” & to increase trust in the forecasts produced.

Objective: Identify large-scale patterns that provide opportunities for 
skillful sub-seasonal precipitation forecast using XAI

Examining predictors via eXplainable AI Example: RPSS for temperature (Weyn et al. 2020)



8

Objective

We leverage explainable techniques to provide insight into the neural 
networks’ “reasoning” & to increase trust in the forecasts produced.

Objective: Identify large-scale patterns that provide opportunities for 
skillful sub-seasonal precipitation forecast using XAI

Examining predictors via eXplainable AI Example: RPSS for temperature (Weyn et al. 2020)

More specifically:

1. Which climate variables are the most important drivers? 

2. Which regions play an important role?

3. At what times do these large-scale patterns exhibit 

predictivity?
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Create set of potential 
predictors

Wide range of different climate 
variables and climate indices

1
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predictors

Wide range of different climate 
variables and climate indices

1

S2S precipitation 
forecast

Purely statistical model based on 
small LSTM-RNNs [1]

2

1. Hochreichter, S. & Schmidhuber, J. Long short term memory. Neural Computation 9(8): 1735-1780, (1997).
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Create set of potential 
predictors

Wide range of different climate 
variables and climate indices

1

S2S precipitation 
forecast

Purely statistical model based on 
small LSTM-RNNs [1]

2

Uncover relevant 
predictors

Make RNNs explainable using 
layer-wise relevance propagation 
(LRP) [2, 3]

3

1. Hochreichter, S. & Schmidhuber, J. Long short term memory. Neural Computation 9(8): 1735-1780, (1997).
2. Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10, e0130140 (2015).
3. Arras, L., Montavon, G., Müller, K.-R. & Samek, W. Explaining Recurrent Neural Network Predictions in Sentiment Analysis. arXiv:1706.07206 (2017).
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Forecast evaluation 2018-2021 (Week 4)

Model skill | 2
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XAI: Layer-wise relevance propagation

Explainability | 3

Climate variables

Predictors

Climate indices

Reference: Bach et al (2015),  Montavon et al. (2017), Arras et al. (2017)
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XAI: Layer-wise relevance propagation

Explainability | 3

Reference: Bach et al (2015),  Montavon et al. (2017), Arras et al. (2017)

Climate variables

Predictors

Climate indices



16

Forecast evaluation 2018-2021 (Week 4)

Explainability | 3
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What makes the forecast skillful in region 6?

Explainability | 3
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What makes the forecast skillful?

Explainability | 3

ENSO (CP, EP) + PDO are well known to influence North American climate 
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What makes the forecast skillful?

Explainability | 3

Influence of MJO & QBO has also been established recently:
Nardi, K. M. et al. Skillful All-Season S2S Prediction of U.S. Precipitation Using the MJO and QBO. Weather and Forecasting 35, 2179–2198 (2020).
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Explainability | 3

The relevance of some time steps may change with season
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The relevance of some time steps may change with season



24

Final thoughts

Conclusions

1 | Selecting predictors

- Currently: Regularized (Varimax-rotated) multivariate PCA + 
climate indices ⇒ final set of predictors contains redundant 
information

- Better: remove redundant predictors prior to analysis

2 | Prediction skill

- Moderate skill improvement compared to climatology for 
western North America (NA)

3 | Explainability

- Skill improvement mainly comes from persistent drought 
conditions over western NA due to global warming

- Other predictors: strong agreement with our current knowledge
- Relevant predictors exhibit time lags (e.g. late summer sea ice 

concentration in the Arctic)

You may want to check out:

EOF analysis and variants using Xarray & Dask 
⇒ Python package xeofs
https://github.com/nicrie/xeofs

https://github.com/nicrie/xeofs
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Create set of potential 
predictors1

S2S precipitation 
forecast

2

Uncover relevant 
predictors

3

1. Hochreichter, S. & Schmidhuber, J. Long short term memory. Neural Computation 9(8): 1735-1780, (1997).
2. Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10, e0130140 (2015).
3. Arras, L., Montavon, G., Müller, K.-R. & Samek, W. Explaining Recurrent Neural Network Predictions in Sentiment Analysis. arXiv:1706.07206 (2017).
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Potential predictors | 1

Climate variables

Predictors

Climate indices

Pacific: ONI, SOI, EMI, PDO, 
PNA

Tropics: MJO, QBO, Solar

Land: Soil moisture

Ocean: SST, SSS

Cryosphere: SIC, Snow

Atmosphere: T2m, z500, RH

Atlantic: NAO, AMM, TNA, TSA

Poles: AAO, AO

ERA5 Reanalysis
(1979-2021)
Daily

NOAA PSL
(1979-2021)
Monthly interpolated to daily

Multivariate 
PCA

+
Varimax 
rotation

40 PCs

Input

18 climate 
indices

1 sequence for each of 
58 predictors

Week 0

Week -8

Week -48

Week 4

2 months

…

~ 1 year
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Potential predictors | 1

Multivariate PCA + Varimax rotation

Example: Mode 1 Seasonal cycle
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Potential predictors | 1

Multivariate PCA + Varimax rotation

Example: Mode 8 ENSO (EP)
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Potential predictors | 1

Multivariate PCA + Varimax rotation

Example: Mode 38 NAO-like
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Potential predictors | 1

Spearman correlation matrix
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Predictor 1

Predictor 2

Predictor 58

Input OutputHidden

Sequences

. .
 . 

. 
- 128 neurons
- LSTM cells
- Recurrent dropout: 0.5
- Activation: Sigmoid

- Learning rate: 1e-4
- Batch size: 16
- Training: 1 epoch

Architecture details

lower

middle

upper

“Probability”

LSTM-RNN model | 2

Architecture



Loss function | 2

34

Ranked Probability Score (RPS)

M : number of categories
ŷ : forecast
y : observation

Ranges from 0 (perfect) → ∞

Forecast ŷ

Observation y



Evaluation metric | 2
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Ranked Probability Skill Score (RPSS)

Compare the RPS of the forecast against another 
(reference) forecast.

Climatology** is often the reference.
Ranges from -∞ → 0 (climatology) → +1 (perfect)

Forecast ŷ

Observation y
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Effect of sample size on RPSS

4 years for test 
set seems to be 
a good 
compromise

High 
year-to-year 
variability

Sa
m

pl
e 

si
ze

Evaluation metric | 2
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Forecast evaluation 2018-2021 (Week 3)

Model skill | 2
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What makes the forecast skillful in region 6?

Explainability | 3

Let’s take a look at these two predictors
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What makes the forecast skillful in region 6?

Explainability | 3

Mode 7

- characterized by seasonality
- state of late summer provides predictive information
- related to sea ice extent, T2m, RH and SST
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What makes the forecast skillful in region 6?

Explainability | 3

Mode 4

- important for JJA forecasts
- describes a reduction of RH, SM and SSS off the west coast of North America
- associated to current drought conditions in western North America?


