

A new high-resolution ocean wind forcing product for the Copernicus Marine Service

Rianne Giesen¹, Ad Stoffelen¹, Ana Trindade^{2,3}, Marcos Portabella² and Anton Verhoef¹

¹Royal Netherlands Meteorological Institute (KNMI), The Netherlands

²Institut de Ciències del Mar, CSIC, Spain

³Universitat Politecnica de Catalunya, Spain

Context

Many processes at the marine boundary layer are dependent on the surface wind:

- Ocean circulation
- Wave generation and storm surges
- Coastal sediment transport
- Momentum, heat and mass exchange

To accurately represent these processes in physical ocean models, global fields with high spatial and temporal resolution are needed

Source: Woods Hole Oceanographic Institution

Wind field spatial and temporal coverage

- ▶ Remotely sensed surface winds have limited spatial and temporal coverage
- Numerical weather prediction (NWP) models provide global coverage at an hourly frequency
- Ocean models are generally forced with NWP model winds

Scatterometer daily coverage (Metop-B ASCAT)

NWP model daily coverage (ECMWF ERA5)

Numerical weather prediction model biases

- Persistent biases between scatterometer observations and ECMWF NWP model winds
- Lack of small-scale variability in ECMWF model winds

Scatterometer correction

 Use temporally-averaged differences between scatterometer observations and collocated NWP model winds to correct for persistent local NWP wind vector biases

$$SC(i,j,t_f) = \frac{1}{M} \sum_{t=1}^{M} u_{10s}^{scat}(i,j,t) - u_{10s}^{NWP}(i,j,t)$$

SC Scatterometer-based correction

(i,j) Grid point spatial coordinates

 t_f NWP model forecast time

M Number of scatterometer observations at (i,j) in time window of N days

t Observation time

 u_{10s}^{scat} Stress-equivalent wind variable from scatterometer

 u_{10s}^{NWP} Stress-equivalent wind variable from NWP model interpolated to (i,j,t)

Scatterometer correction: window length

- Bias magnitude and spatial variability reduces for longer window lengths
- Persistent scatterometer-model biases remain

Date	20 January 2021 0 UTC
ECMWF model	ERA5 reanalysis
Scatterometers	Metop-B ASCAT Metop-C ASCAT

Meridional wind bias

Corrected ECMWF model wind fields

$$u_{10s}^{NWP*}(i,j,t_f) = u_{10s}^{NWP}(i,j,t_f) + SC(i,j,t_f)$$

- > 20-day average scatterometer-model differences larger than ± 2 m/s
- ▷ Enhanced local and regional wind gradients in the tropical Atlantic

Date	1 March 2022 12 UTC
ECMWF model	ECMWF operational
Scatterometers	Metop-B ASCAT Metop-C ASCAT

Meridional wind

 $[m s^{-1}]$

-1

Validation framework

Comparison of uncorrected and bias-corrected ECMWF model winds to collocated independent scatterometer observations

Input data (January 2021)

- ECMWF NWP winds: uncorrected (ERA5) and bias-corrected (ERA5*)
- ▷ Scatterometer observations from Metop-A ASCAT and HY-2B HSCAT
- > Temporal averaging window for bias corrections
 - Averaging window length
 - Averaging window definition (backward, centered, forward window)
- Scatter plots of individual collocated values
- Spatial maps of scatterometer-model differences (monthly average)

Validation: averaging window length and definition

- Significant wind bias reduction, consistent for Metop-A ASCAT and HY-2B HSCAT
- Vector root-mean-squared (VRMS) difference for ERA5* similar or smaller than ERA5 for longer windows

Averaging window length (days)

Averaging window length (days)

Averaging window length (days)

Window length selection criteria:

- VRMS similar/lower than ERA5
- Small difference between backward and centered window
- Feasible computation time

Selected window length: 20 days

Period	January 2021
ECMWF model	ERA5 reanalysis
Scatterometers	Metop-B ASCAT Metop-C ASCAT

Validation: individual values

 Generally close correspondence between HY-2B observations and bias-corrected ECMWF model

Period	January 2021
ECMWF model	ERA5 reanalysis
Scatterometers	Metop-B ASCAT Metop-C ASCAT

Validation: comparison to HY-2B HSCAT

- ▷ Bias correction very similar to mean difference with collocated independent scatterometer observations
- Persistent biases removed effectively
- > Some biases remain in regions with large variability in scatterometer-model differences

Period	January 2021
ECMWF model	ERA5 reanalysis
Scatterometers	Metop-B ASCAT Metop-C ASCAT

Meridional wind

New Copernicus Marine Service L4 wind products

- ▶ Produced by KNMI

- Provided variables: wind and stress vector components, divergence and curl
- Statistical variables: bias, standard deviation of differences, difference of variances, number of observations
- Near real-time product (years-2 day-1)
 - Bias correction based on Metop-B and Metop-C ASCAT scatterometer observations
 - 20-day backward averaging window
 - Planned release: July 2022
- Reprocessed product (1992 month-4)
 - Bias correction based on available scatterometer observations (varying over time period)
 - 20-day centered averaging window
 - Planned release: November 2022

Refinement of the methodology:

- Outlier removal
- Averaging window definition
- Scatterometer combinations

User feedback is welcome!

Contact: rianne.giesen@knmi.nl

Validation of the bias-corrected model fields:

- Derivative fields (divergence, curl)
- Coastal regions (comparison with buoys and SAR winds)
- Effect on ocean processes (wind-driven circulation, air-sea interaction)

