

Copepods counter dispersion to maintain high mating-encounter rates

Ron Shnapp* & Markus Holzner EGU, Vienna, May, 2022

Copepod diffusion

Copepods diffuse in their environment:

- 1. due to **turbulent** flows that carry them
- 2. due to their own swimming

Copepod diffusion

Copepods diffuse in their environment:

- 1. due to **turbulent** flows that carry them
- 2. due to their own swimming

As a consequence, groups of copepods disperse away

The problem:

Copepods reproduce sexually, so males and females must find each other to reproduce. For that, they aggregate in groups called mating-clusters. $^{\rm 1}$

But, how can copepods cluster if their are constantly diffusing away?

¹Davis et al, *Science*, 1992

Our solution

Male copepods constanlty search for cues from nearby females (hydrodynamical or chemical).² When they pick up a signal, they attempt to make contact and varify whether mating is possible.

Michalec et al., PNAS, 2017

Spoiler alert:

This approach for contact alone is sufficient to make clustering happen.

²Bagøien & Kiørboe, Marine Ecology Progress Series, 2005

The pair-interaction model

Consider the following dynamical model:³

- 1. copepods wander around randomly in space;
- 2. copepods have an interaction sphere;
- 3. if two copepods are within each other's interaction sphere, they move to the same position (high-five);
- 4. after that, copepods cannot interact for a fixed period;

³Shnapp et al., arXiv:2205.08927, 2022.

The pair-interaction model

Interactions support clustering⁴:

Similar to the aglumeration in colloid suspensions, clustering occurs due to reduced diffusivity of interacting particles.⁵

⁴Shnapp et al., arXiv:2205.08927, 2022.

⁵Chandrasekhar, Reviews of Modern Physics, 1943 and the second second

Experimental confirmation

We confirm our model using a 3D-tracking experiment⁶ using about 65,000 laboratory trajectories⁷

The PDFs of cluster size agree remarkably well, without using any fitting parameters!⁷

⁶Michalec et al., PNAS, 2017; Michalec et al., eLife, 2020

⁷Shnapp et al., arXiv:2205.08927, 2022.

Conclusions

Take home message:

- (1) For copepods, mating clusters are crucial to maintain high encounter rates
- (2) Mating clusters are supported by pair-interactions (a *high-five* mechanism)

preprint:

R. Shnapp, F.-G. Michalc and M. Holzner, arXiv:2205.08927, 2022 (submited)

Thank you!

Extra - measuring model parameters

Michalec et al., *eLife*, 2020; Shnapp et al., arXiv:2205.08927, 2022.