

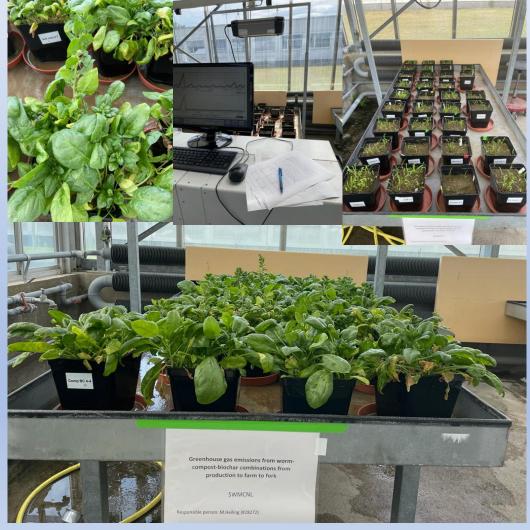
Greenhouse gas emissions from worm-compost-biochar combinations from farm to production to fork

Patrick Cito Namulisa^{1,2}, Maria Heiling³, Alfred Grand⁴, Christian Resch³, Gerd Dercon³, and Rebecca Hood-Nowotny¹

- I. Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- 2. Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- 3. Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Center of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
- 4. Grand Farms, Absdorf, Austria

#EGU22 | ERE4.2 Thursday, 26th May 2022 Vienna, Austria

Abstract & display material


This presentation participates in OSPP EGU Outstanding Student & PhD candidate Presentation contest

Presentation contest EGU22-7741

Background & Objectives

- Worm-composting: vermicast
- Soil amendment with positive effects on soil physico-chemical properties promoting productivity (Pramanik, 2010)
- Circular economy and green business
- Worms are responsible for emissions of potent GHG (N₂O)
- The addition of Biochar (BC) to the system to reduce the N_2O emissions (Wu et al, 2019)
- Our central hypothesis is that BC will reduce N_2O emissions from the worm treatments and that,
- Greater reductions in worm emissions when BC is added after (Compost-BC-worms) the initial hot composting process than when added before (BC-compost-worms).

This presentation participates in OSPP EGU Outstanding Student & PhD candidate Presentation contest

Experiment setup

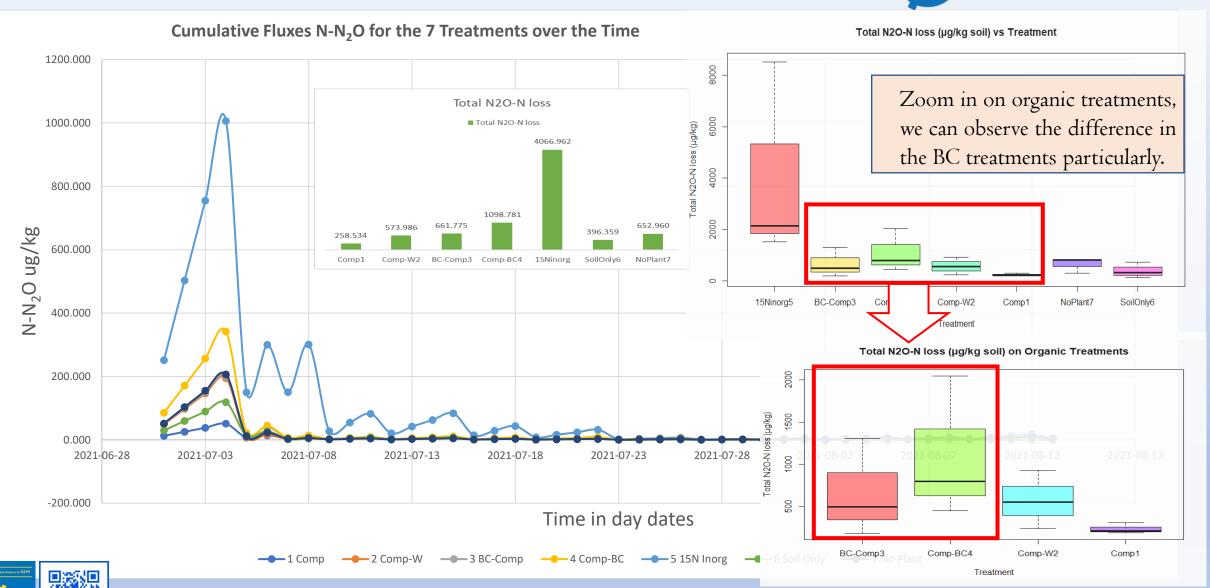
- Greenhouse exp at IAEA
 (Seibersdorf Laboratories)
- Experimental setup (pot)
- Labelling ¹⁵N

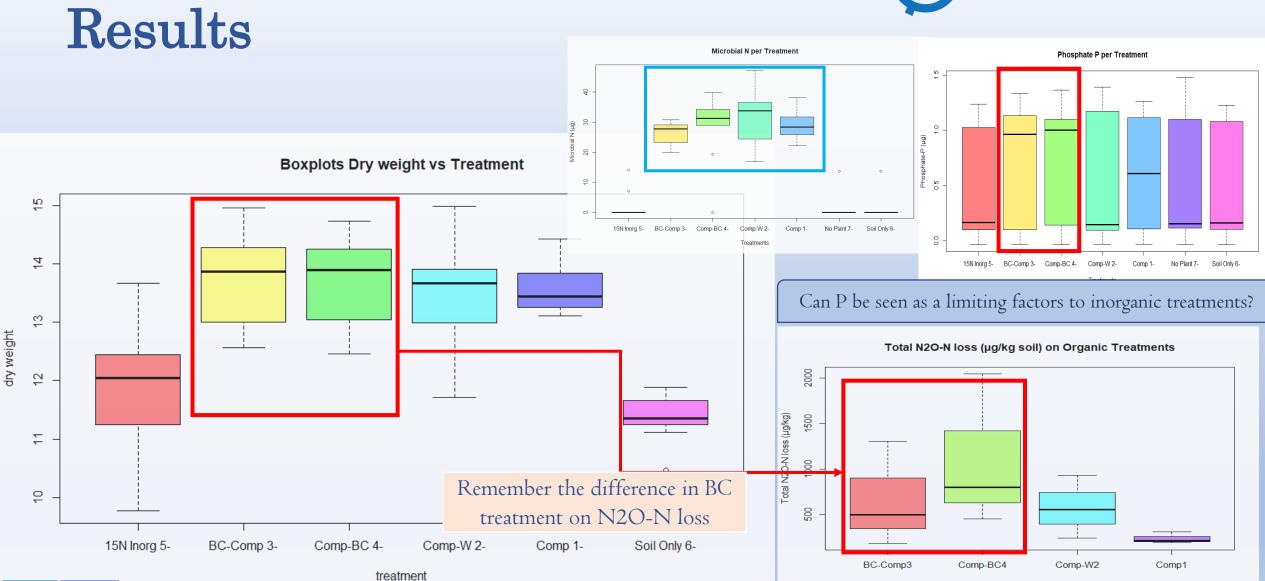
EXPERIMENTAL DESIGN										
		TABLE I					TABLE II			
	Lines	I	2	3	4		5	6	7	8
BLOCK I	I	Comp 2-1	Comp W-1-3	No Plant 7-1	BC-Comp 3-3		BC-Comp 3-1	Comp 2-3	Soil only 6-I	Comp 2-2
	2	BC-Comp 3-2	15N Inorg 5-2	Comp BC 4-1	Soil only 6-2		Comp BC 4-2	Comp W-1-2	15 Inorg 5-3	No Plant 7-2
	3	Comp W-I-I	Soil only 6-3	15N Inorg 5-1			No Plant 7-3	Comp BC 4-3		
	ı	1	Ţ				1			
BLOCK II	1	Comp W-I-4	BC-Comp 3-6	Soil only 6-5	Comp BC 4-6		15N Inorg 5-6	Comp 2-4	Comp BC 4-4	BC-Comp 3-5
	2	Comp 2-5	No Plant 7-5	Comp 2-6	15N Inorg 5-5		Comp BC 4-5	No Plant 7-6	Comp W-I-5	No Plant 7-4
	3	BC-Comp 3-4	Soil only 6-6	Comp W-1-6			15N Inorg 5-4	Soil only 6-6		
BLOCK III	I	BC-Comp 3-7	15N Inorg 5-9	Comp BC 4-8	BC-Comp 3-8		BC-Comp 3-9	Comp 2-8	Comp BC 4-7	15N Inorg 5-8
	2	15N Inorg 5-7	Soil only 6-9	No Plant 7-8	Soil only 6-8		Comp W-1-8	Soil only 6-7	Comp 2-7	No Plant 7-7
	3	Comp 2-9	Comp W-1-7	Comp BC 4-9			No Plant 7-9	Comp W-I-9		

Materials & Methods

- GHG exchange:
 N2O & corresponding isotopes (δ¹⁵N)
 Manual Chamber + Trace Gas Analyser (LGR)
- Soil Moisture (water use)

BOKU Tulln Labs (Stable Isotope Group)


- Aboveground biomass
- Soil Sampling
- Inorganic N (NH₄-N &NO₃-N) 0.5M K2SO₄
- Microbial Biomass (CFEM)
- EA-IRMS measurements (N content & δ^{15} N)
- Statistics & Data Analysis with RStudio & Excel


Results

EGU General 2022

Treatment

Summary & take home message

- Although many have suggested increased N_2O emissions from Compost and Worm-Compost we couldn't observe much emissions
- Overall organic treatments showed far less N_2O emissions compared conventional production (inorganic fertilization) and plant production was enhanced in compost treatment.
- BC didn't reduce emissions, BC-Comp showed slightly higher N₂O emissions compared to Comp and Comp-W, but offers the best trade-off between soil improvement and plant production overall
- The results seen from this work add to knowledge base for advocacy of the use of worm-compost-biochar as valuable peat alternative and open a path for further research
- Decision making on peri-urban food wastes management circular economy and sustainability strategies. Farm to Fork strategy for a fair, healthy and environmentally-friendly food system (EU Green Deal 2020)

Greenhouse gas emissions from worm-compost-biochar combinations from farm to production to fork

Patrick Cito Namulisa^{1,2}, Maria Heiling³, Alfred Grand⁴, Christian Resch³, Gerd Dercon³, and Rebecca Hood-Nowotny¹

Thank you for your attention!

#EGU22 | ERE4.2

Thursday, 26th May 2022

Vienna, Austria

Abstract & display material

