

Intermittency, stochastic Universal Multifractals and the deterministic Scaling Gyroscope Cascade model

Xin LI¹, Daniel SCHERTZER¹, Yelva ROUSTAN², Ioulia TCHIGUIRINSKAIA¹

¹Laboratory of Hydrology Meteorology & Complexity (HM&Co), Ecole des Ponts ParisTech, Paris, France ²Centre d'Enseignement et de Recherche en Environnement Atmosphérique (Cerea), Ecole des Ponts ParisTech, Paris, France

1. Introduction

➤ Intermittency, which corresponds to the concentration of the activity of a field, e.g. flow vorticity, is one of the most fundamental features of turbulence and more generally of geophysics. It generates strongly non-Gaussian fluctuations.

➤ The log-normal model had been considered as a good approximation for intermittency in hydrodynamic turbulence. However, many works show that probability distribution of intermittency deviates from the log-normal distribution.

- ➤ Based on the multiplicative cascade models and a multiplicative generalization of the central limit theorem, **Universal Multifractal (UM)** framework [1] was introduced to describe the **multifractality** of a field by two physically meaningful parameters:
- The mean intermittency C_1 : measures the mean concentration of the activity.
- The multifractality index α (Levy index): how quickly the intermittency increases with the activity level .

The **UM parameters** for the atmospheric turbulence [2] yielded by various turbulence data is $\alpha \approx 1.5$, $C_1 \approx 0.25$.

UM parameters can be obtained from the double trace moment (DTM) analysis.

$$K(q,\eta) = \eta^{\alpha} \frac{C_1}{\alpha-1} (q^{\alpha} - q)$$
 where q is the moment order and η is the power.

[1] Schertzer, D., Lovejoy, S. (1987). Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. *Journal of Geophysical Research: Atmospheres*, 92(D8), 9693-9714.

[2] Schmitt, F., Schertzer, D., Lovejoy, S., & Brunet, Y. (1994). Estimation of universal multifractal indices for atmospheric turbulent velocity fields. In *Fractals in Natural Sciences* (pp. 274-281).

2. Approach

The Scaling Gyroscope Cascade (SGC) model [3]:

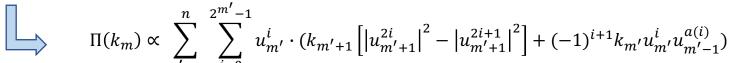
$$\left(\frac{d}{dt} + vk_m^2\right)u_m^i = k_{m+1} \left[\left| u_{m+1}^{2i} \right|^2 - \left| u_{m+1}^{2i+1} \right|^2 \right] + (-1)^{i+1}k_m u_m^i u_{m-1}^{a(i)}$$

is the evolution equation (Fig 1) of the superposition coupling of two equations of gyroscope type, which is obtained from the Bernoulli's form of the Navier-Stokes equation. **Triad interactions** preserve detailed energy conservation.

- The maximum cascade step: n (Cascade step starts from 0).
- The simulated step is $m \ (0 \le m \le n)$, i is location $(0 \le i \le 2^m 1)$.
- The location of ancestor is a(i) = int(i/2).
- Forced turbulence: It corresponds to a quasi-equilibrium between forcing and dissipation, but with high fluctuations.

Fig 1. Figure of gyroscope cascade.

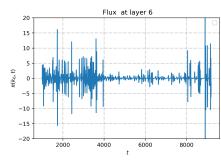
- **The energy flux** at k_m : the sum of energy transfer rate from all wave number $k < k_m$ to other wave number $k \ge k_m$
- $\Pi(k_m) = \int_{k_m}^{\infty} T(k,t) \propto \sum_{m'=m}^{n} \sum_{i=0}^{2^{m'}-1} u_{m'}^{i} \cdot (\frac{\partial u_{m'}^{i}}{\partial t} + v k_{m'}^{2} u_{m'}^{i})$



[3] Chigirinskaya, Y., Schertzer, D. (1997). Cascade of scaling gyroscopes: Lie structure, universal multifractals and self-organized criticality in turbulence. In Stochastic Models in Geosystems (pp. 57-81). Springer, New York, NY.

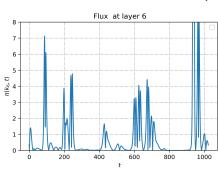
3. Simulation

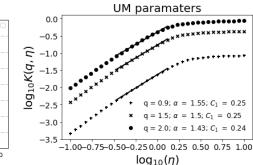
Case	n	p	Force	dt	Tmax
1	12	10	0.5	0.0004	9200



X label: The energy flux $\Pi(k_6)$ Y label: Time (1000-9200) Get rid of initial condition

One of time series (7970 – 9170, 1200 eddy turn over time) The energy flux $\Pi(k_6)$ is normalized by average and its absolute value is analyzed.

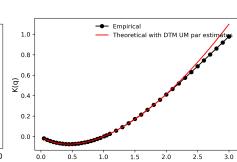




- Dissipation step: p
- Time step: dt ($dt \ll \frac{2}{vk_n^2}$ to ensure the stability of Euler computing method)
- Tmax: Normalized by the large eddy turn over time τ which is the time to fully develop the large eddies and enough for small eddies.

$$(au = rac{L(0)}{\sqrt{K(0)}}$$
, where $K(t) = \sum_{m=0}^{n} \sum_{i=0}^{2^m-1} (u_m^i)^2$ is the system energy and $L(t) = rac{\int_{m=0}^{n} k_m^{-1} E(k_m,t) dk}{\int_{m-0}^{n} E(k_m,t) dk}$ is the

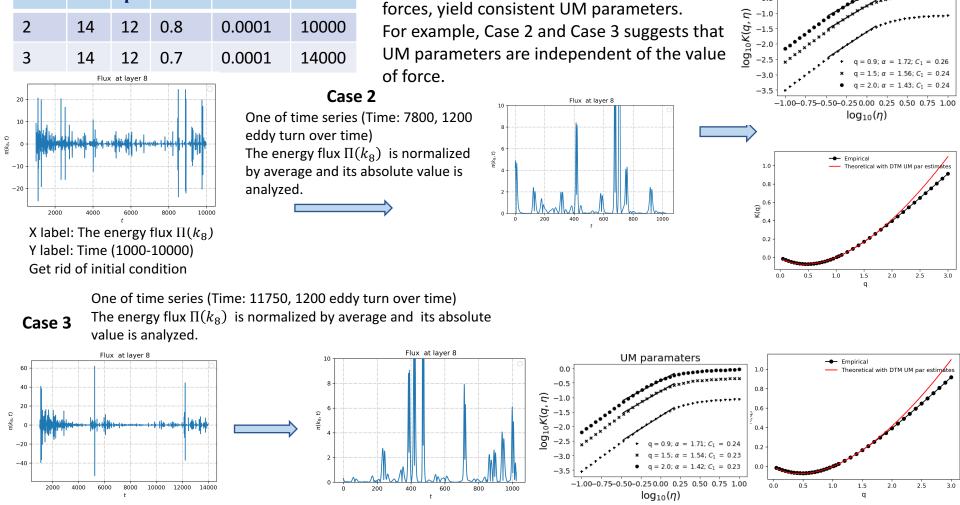
• Initial energy spectrum : $E(k,t) = C_K \varepsilon^{\frac{1}{3}} k^{-\frac{3}{3}}$. The Kolmogorov constant is assumed as $C_k = 1$ and $\varepsilon = 1$.



integral scale.)

lphapprox 1.5 The mean intermittency $C_1pprox 0.25$ The critical moments is $q_spprox 2.51$ after which the empirical curve becomes linear.

The multifractality index



Case

Force

Tmax

The numerous simulations by using different

UM paramaters

-0.5

4. Conclusion

All simulations of SGC model display an extreme space-time intermittency. Their multifractal analysis confirms that the UM parameters are $\alpha \approx 1.5$, $C_1 \approx 0.25$ and exhibits good approximation for the theoretical scaling moment function, which questions the lognormal approximation for the hydrodynamic turbulence.