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1. Introduction

» Intermittency, which corresponds to the concentration of the activity
of a field, e.g. flow vorticity, is one of the most fundamental features of
turbulence and more generally of geophysics. It generates strongly
non-Gaussian fluctuations.

» The log-normal model had been considered as a good approximation for
intermittency in hydrodynamic turbulence. However, many works show
that probability distribution of intermittency deviates from the log-

normal distribution. uropean
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» Based on the multiplicative cascade models and a multiplicative generalization of
the central limit theorem, Universal Multifractal (UM) framework [1] was
introduced to describe the multifractality of a field by two physically meaningful

parameters:
. The mean intermittency C;: measures the mean concentration of the activity.
. The multifractality index a (Levy index): how quickly the intermittency

increases with the activity level .

The UM parameters for the atmospheric turbulence [2] yielded by various turbulence
dataisa = 1.5, C; = 0.25.
UM parameters can be obtained from the double trace moment (DTM) analysis.

K(q,n) =n% %(q“ — @) where g is the moment order and 7 is the power.
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2. Approach

/> The Scaling Gyroscope Cascade (SGC) model [3]: \
(5 + VRE U = e [[u2ia]” = (23] + (D™ kit

is the evolution equation (Fig 1) of the superposition coupling of two equations of gyroscope
type, which is obtained from the Bernoulli’s form of the Navier-Stokes equation. Triad
interactions preserve detailed energy conservation.

* The maximum cascade step: n ( Cascade step starts from 0).

* Thesimulated stepism (0 <m < n),iislocation (0 <i <2™—1).

\- The location of ancestor is a(i) = int(i/2). /

Fig 1. Figure of
gyroscope cascade.

p
» Forced turbulence: It corresponds to a quasi-equilibrium between forcing and
dissipation, but with high fluctuations.

o

(> The energy flux at k,,,: the sum of energy transfer rate from all wave number k < k,, to other wave number k >

o m! _ P auinr P
o H(kp) = fka(k; t) o Y m Do Uy Grradis vkZu)

n 2m -1
, . 2 . 2 , . :
|—|_—;> (k) o z Z by (kg [[u2 0| = 25| + (D kel s )
\ m'=m i=0

[3] Chigirinskaya, Y., Schertzer, D. (1997). Cascade of scaling gyroscopes: Lie structure, universal multifractals and self-organized criticality in
turbulence. In Stochastic Models in Geosystems (pp. 57-81). Springer, New York, NY.
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3. Simulation * Dissipation step: p

. 2 -
* Time step: dt (dt < —= to ensure the stability of
n
Euler computing method
Case n p Force dt Tmax P ) & ) )
* Tmax: Normalized by the large eddy turn over time t
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. Flux at layer 6 and enough for small eddies.
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The numerous simulations by using different

forces, yield consistent UM parameters.
For example, Case 2 and Case 3 suggests that
UM parameters are independent of the value

of force.
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4. Conclusion

All simulations of SGC model display an extreme space-time
intermittency. Their multifractal analysis confirms that the UM
parameters are a = 1.5, €1 = 0. 25 and exhibits good approximation for
the theoretical scaling moment function, which questions the log-
normal approximation for the hydrodynamic turbulence.



