Navigation of micro swimmers in steady flow: the importance of symmetries

B. Mehlig

Department of Physics, University of Gothenburg, Sweden

University of Gothenburg, Sweden

Based on J. Qiu, N. Mousavi, K. Gustavsson, C. Xu, B. Mehlig & L. Zhao, Journal of Fluid Mechanics **932** (2022) A10.

Question

How can an active particle learn to navigate a complex flow in an optimal way?

Zooplankton (copepods): accelerate to escape predation.

Ardeshiri, Schmitt, Souissi, Toschi & Calzavarini, J. Plankton. Res. 39 (2017) 878

Control problem: minimise time for active particle to move from A to B in complex flow.

Control variable: steering angle. Buzzicotti, Biferale, Bonaccorse, Clark Di Leoni & Gustavsson (2019)

Optimal strategy not obvious. Depends on the *signals* the particle picks up as it moves, and upon its possible *actions*. Proof-of-principle demonstration: use machine-learning to find strategies minimising time it takes bottom-heavy plankton to reach water Surface.

Colabrese, Gustavsson, Celani & Biferale, Phys. Rev. Lett. **118** (2017) 158004

This and many follow-up studies use global signals & actions that refer to the laboratory frame (up, down, left, right). Plankton measure *local hydrodynamic signals* and take *local actions*.

Kiorboe & Visser, Marine Ecol. Prog. Ser. 179 (1999) 81

Can one learn from local signals with local actions?

Hydrodynamic signals

Kiorboe & Visser, Marine Ecol. Prog. Ser. 179 (1999) 81

Hydrodynamical signals measured by setal bending patterns.

- 1. Deformation rate δ_s of setae due to strain \mathbb{S} : $\delta_s = \mathbb{S} r_s$
- 2. Deformation rate due to *fluid acceleration*. Stokes equation $\dot{\boldsymbol{v}} = \alpha(\boldsymbol{u} \boldsymbol{v}) + \beta \frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t}$ with

$$lpha^{-1}=rac{2a^2}{9
u}(2arrho_{
m p}+arrho_{
m f})$$
 and $eta=3arrho_{
m p}/(2arrho_{
m p}+arrho_{
m f})$

Steady state $\delta_a \sim u - v = \frac{\beta - 1}{\alpha} \frac{\mathrm{D} u}{\mathrm{D} t} = \frac{2a^2}{9\nu} \frac{\varrho_{\mathrm{p}} - \varrho_{\mathrm{f}}}{2\varrho_{\mathrm{p}} + \varrho_{\mathrm{f}}} \frac{\mathrm{D} u}{\mathrm{D} t}$ Must have $\varrho_{\mathrm{p}} \neq \varrho_{\mathrm{f}}$ to measure acceleration.

3. Deformation rate due due to vorticity.

Torque balance:
$$8\pi a^3 \varrho_{\rm f} \nu (\Omega - \omega) + m_{\rm p} L \wedge g = 0$$

$$oldsymbol{\delta}_{\omega} \sim a(oldsymbol{\Omega} - oldsymbol{\omega}) = rac{2 arrho_p}{9 arrho_{
m f}} (a/
u) (oldsymbol{L} \wedge oldsymbol{g})$$

Requires density asymmetry $\mathbf{L} \neq 0$ (gyrotactic torque).

Non-spherical, gyrotactic, settling swimmer

$$\dot{m{x}} = m{v} \,, \quad m{v} = m{u} + v_{
m S} m{n} + m{v}_{
m g}$$
 swimming settling

$$\dot{m{n}} = m{\omega} imes m{n} \,, \quad m{\omega} = m{\Omega} + \Lambda m{n} imes (\mathbb{S}m{n}) + m{\omega}_{\mathrm{s}} - rac{1}{2B}m{n} imes m{e}_{\mathrm{g}}$$
 vorticity strain steering gyrotactic torque

with shape parameter $\Lambda = (\lambda^2 - 1)/(\lambda^2 + 1)$ (aspect ratio $\lambda = c/a$

Two-dimensional navigation & flow.

Signals: local strain ($S_{nn} = \mathbf{n} \cdot \mathbb{S}\mathbf{n}$, $S_{nq} = \mathbf{n} \cdot \mathbb{S}\mathbf{q}$), vorticity ($\Delta\Omega = (\mathbf{\Omega} - \boldsymbol{\omega}) \cdot \mathbf{e}_z$), and velocity ($\Delta u_q = (\mathbf{u} - \mathbf{v}) \cdot \mathbf{q}$), each discretised into three states.

Actions: steering with angular velocity $\omega_{\rm s}$, discretised into three actions.

Q-learning to find strategy for upwards navigation.

Case	State	Action	Settling	Gyrotaxis	Vertical reflection symmetry	Training
S 1	S_{nq}, S_{nn}	$\boldsymbol{\omega}_{\mathrm{s}} = [-1, 0,$	1] N o	No	Unbroken	Failure
S4	S_{na}, S_{nn}	$\omega_{\mathrm{s}} = [-1, 0,$	1] N o	Yes	Broken (gyrotaxis)	Success
S5	S_{nq}, S_{nn}	$\omega_{\rm s} = [-1, 0,$	1] Yes	No	Broken (settling)	Success
		$\omega_{\rm s} = [-1, 0,$	-	Yes	Broken (gyrotaxis and settling)	Success

Dynamics must break symmetry (gyrotaxis, settling) for the active particle to learn to

navigate upwards.

What does the swimmer learn? In two dimensions (x - y-plane), the swimmer learns

$$\omega_s > 0$$
 $S_{nq} > 0$ $\omega_s = 0$ if $S_{nq} = 0$ $\omega_s < 0$ $S_{nq} < 0$

Why is this strategy successful?

Interpretation of optimal strategy

Qiu, Mousavi, Gustavsson, Xu, Mehlig & Zhao, JFM 932 (2022) A10

What does the swimmer learn? In two dimensions (x - y-plane)

$$S_{nq} = [oldsymbol{n} imes (Soldsymbol{n})] \cdot oldsymbol{e}_z$$

Compare angular equation of motion

$$\dot{m{n}} = m{\omega} imes m{n} \,, \quad m{\omega} = m{\Omega} + \Lambda m{n} imes (\mathbb{S}m{n}) + m{\omega}_{ ext{s}} - rac{1}{2B}m{n} imes m{e}_{ ext{g}}$$

Conclusion: the swimmer adopts a strategy that emulates a slender particle ($\Lambda = 1$).

Why? Because slender swimmers tend to sample upwelling regions of the flow.

Gustavsson, Berglund, Jonsson & Mehlig, Phys. Rev. Lett. **116** (2016) 108104 Borgnino, Boffetta, De Lillo & Cencini, J. Fluid. Mech. **856** (2018) R1

Chain formation allows cells to move upwards more efficiently.

Lovecchio, Climent, Stocker & Durham, Science Advances 5 (2019)

Open questions

Here two-dimensional steady flow. Role of symmetry in three spatial dimensions? Unsteady flow?

We discretised signals and actions using simplified estimates for threshold values. Expect: different thresholds may change strategy.

How can the organisms distinguish undisturbed flow-signal from the disturbance they themselves create?

Upwards navigation is a fairly simple task, here used to illustrate the role of symmetry. In reality avoidance of predators more important, or a combination of different targets to optimise.