

Observations of contrail cirrus in ice-subsaturated environments and implications for mitigating the climate impact of aviation

Yun Li¹, Christoph Mahnke¹, Susanne Rohs¹, Ulrich Bundke¹, Nicole Spelten¹, Georgios Dekoutsidis², Silke Groß², Christiane Voigt^{2,3}, Ulrich Schumann², Andreas Petzold¹, and Martina Krämer^{1,3}

May 24. 2022 | EGU2022 | yun.li@fz-juelich.de

- 1. Forschungszentrum Jülich, Jülich, Germany
- 2. DLR, Oberpfaffenhofen, Germany
- 3. Johannes-Gutenberg University of Mainz, Mainz, Germany

Many thanks to the PIs of NIXE-CAPS, SHARC and BAHAMAS for providing us the data.

Many thanks to the ML-CIRRUS 2014 coordinating team and the flight-planning team for their dedication.

Member of the Helmholtz Association

This Project is funded by the European Union under the Grant Agreement No. 875036

Motivation

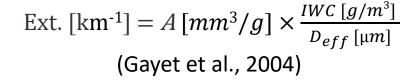
- Aviation: ≈ 5% of the human-induced global warming (Lee et al., 2009 & 2021).
- Contrail cirrus: > 50% of aviation's climate forcing (Lee et al., 2009 & 2021).
 - → Large uncertainties related to optical properties.
 - → Complications concerning the differentiation from natural cirrus.
 - → The importance of slight ice-subsaturation (Kübbeler et al., 2011) often neglected.

Investigation

The ML-CIRRUS 2014 dataset — 14.7 hrs contrail and natural cirrus sampling over Europe and the Northeast Atlantic region.

- → Separating contrail cirrus from natural cirrus.
- → Searching for the patterns in the occurrence of contrail cirrus.

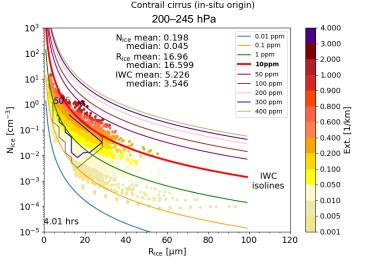
Source: HALO database



Method

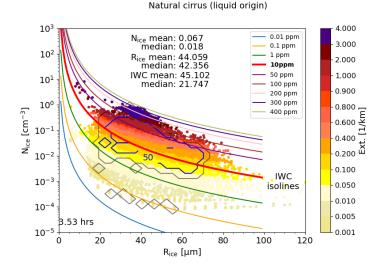
Separating contrail and natural cirrus:

- T < 235 K & p < 350 hPa (altitude > ~ 8.1 km)
- The Schmidt-Appleman Criterion (SAC)
 - SAC fulfilled -> contrail cirrus, presumably
 - SAC unfulfilled -> natural cirrus
- The most frequent cruising altitude
 - 200–245 hPa, IAGOS statistics



Results

Page 3



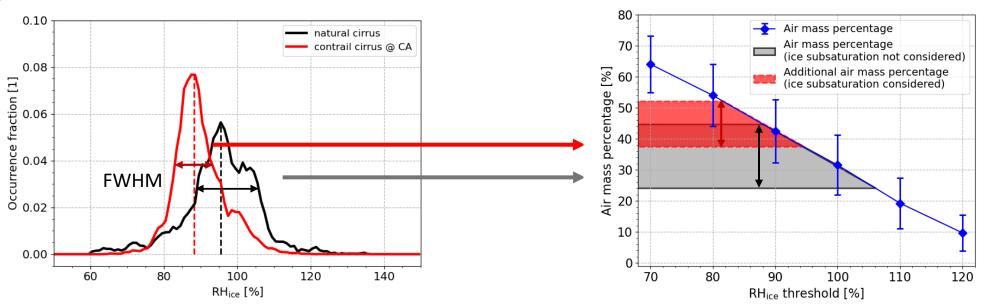
1. Properties of contrail cirrus and liquid origin cirrus

Contrail cirrus often occur with:

 R_{ice} < 30 μ m N_{ice} median = 0.045 cm⁻³ IWC < 10 ppmv Optically thin Aged contrail cirrus

Liquid origin natural cirrus often occur with:

 $R_{ice} > 30 \ \mu m$ N_{ice} median = 0.018 cm⁻³ IWC > 10 ppmv Optically thick



Results

Member of the Helmholtz Association

ACACIA

2. Slight ice-subsaturation in contrail cirrus

ML-CIRRUS dataset: Probability distribution of RH_{ice} for contrail and natural cirrus.

MOZAIC dataset 1995 – 2010: Air mass fraction above Europe and the North Atlantic for different RH_{ice} threshold values.

- → The fraction of air masses potentially contributing to contrail cirrus formation increases by ~ 8% if contrail cirrus in ice-subsaturation considered.
- → Larger impact of contrail cirrus' radiative forcing? ongoing discussions and investigations

Summary

- ✓ A simple method to differentiate contrail cirrus and natural cirrus on a statistical basis.
- ✓ Microphysical and optical properties of contrail cirrus and natural cirrus measured during the ML-CIRRUS 2014 campaign.
- ✓ High occurrence probabilities of contrail cirrus over Europe and the Northeast Atlantic:
 - in the cruising altitude range 200–245 hPa.
 - slight ice-subsaturation with RH_{ice} centring at ~ 90%.
- ✓ Implications for mitigating the climate impact of aviation:
 - Contrail cirrus' climate impact might be larger than previously thought.
 - Contrail avoidance might need to be conducted with a lower RH_{ice} threshold.

Thank you for your attention!

