TIME-VARIABLE GRAVITY AND MASS REDISTRIBUTION FROM SYNERGISTIC USE OF **GRACE-FO AND CHINESE GRAVITY SATELLITES**

C. Strohmenger¹, J. Kusche¹, W. Feng², Y. Shen³, Q. Chen³, and C. Wang⁴ With further inputs from Z. Liu¹, D.H. Guo², Y. Xiong², T. Feng³, F. Wang³, Z. Zhu⁴

- ¹ Institut für Geodäsie und Geoinformation, Universität Bonn
- ² Sun Yat-sen University, China
- ³ Tongji University, China
- ⁴ Chinese Academy of Sciences, China

Deutsche Foundation Forschungsgemeinschaft

- determine optimal orbit parameters
- simulation of joint (GRACE-FO) observing scheme
- benefit for retrieving mass transport signals?

Improved gravity field modeling

Main Objectives

East China Sea (ECS)

North China Plain (NCP)

TianQin-2: Simulation Studies

- Cumulative geoid error at d/o 120 (monthly solutions)
 - GFO: 9.4 cm
 - GFO+TQ2: 3.7 cm
- Bi-monthly solutions with TQ2+GFO with same spatial resolution as monthly GFO

Numerical integration approach using ESA Earth System Model **AOHIS** (Atmosphere, **O**cean, **H**ydrology, **I**ce, **S**olid Earth)

Noise assumptions:

- Range rate and accelerometer: colored noise
- Orbit position error: 1cm, 3D
- De-aliasing error: ESA ESM/AOerr
- Ocean tide error: GOT4.7-EOT11a

- determine optimal orbit parameters
- simulation of joint (GRACE-FO) observing scheme
- benefit for retrieving mass transport signals?

Improved gravity field modeling

- co-estimate de-aliasing signals
- optimize noise modeling and acc. calibration
- develop optimal anisotropic filter

Tongji-Gracefo2020

- constructing variance-covariances of de-aliasing data
- update use of FES2014b ocean tide model

- joint use of microwave and LRI data
- construction of decorrelation filtering for LRI data noise

- determine optimal orbit parameters
- simulation of joint (GRACE-FO) observing scheme
- benefit for retrieving mass transport signals?

Improved gravity field modeling

- co-estimate de-aliasing signals
- optimize noise modeling and acc. calibration
- develop optimal anisotropic filter

Main Objectives

East China Sea (ECS)

- determine ocean mass change + uncertainty
- close the regional sea level budget
- estimate sediment contribution

North China Plain (NCP)

East China Sea

Good agreement!

Steric:

Ocean Mass:

GRACE(-FO), leakage correction: GLWS RL02

ORAS5 Reanalysis

mostly shallow region

different kinds of currents

sediment transport

- determine optimal orbit parameters
- simulation of joint (GRACE-FO) observing scheme
- benefit for retrieving mass transport signals?

Improved gravity field modeling

- co-estimate de-aliasing signals
- optimize noise modeling and acc. calibration
- develop optimal anisotropic filter

Main Objectives

East China Sea (ECS)

- determine ocean mass change + uncertainty
- close the regional sea level budget
- estimate sediment contribution

North China Plain (NCP)

- spatio-temporal variability of groundwater storage
- isolate contributions from deep/shallow aguifers
- validate with independent observations

North China Plain

Groundwater level data collection

Data Source: Annual reports from China Institute of Geological Environment Monitoring, and Ministry of Water Resources of the People's Republic of China (shallow aguifers)

→ More than 287 well level data were collected from 01-2005 to 12-2017

Groundwater storage trends (2003-2012)

Good agreement!

Zhang et al. (2019)

Conclusions

- China is developing a new gravity field satellite mission, TianQin-2 (Gong et al., 2021)
- In our project we will improve time-variable gravity field modeling
 - Optimization studies for the TianQin-2 orbit through simulation studies, in conjunction with GRACE-FO or successor mission
 - Improve GRACE and GRACE-FO gravity field models at the processing level and in the postprocessing step
 - North China Plain: investigation of groundwater storage variability
 - East China Sea: investigation of sea level change