

Assessment of modelling approaches for soil compaction risk based on wheeling experiments

Julius J. Weimper¹, Raimund Schneider¹, Judith Koschorke², Lukas Wald³, Matthias Trapp⁴, Markus Casper⁵ and Christoph Emmerling¹

¹Department of Soil Science, Trier University, Trier, Germany (weimper@uni-trier.de); ²Soil Science and Geomorphology, Eberhard Karls University, Tübingen, Germany; ³Dienstleistungszentrum Ländlicher Raum Bad Kreuznach, Germany; ⁴RLP Agroscience GmbH, Neustadt an der Weinstraße, Germany; ⁵Department of Physical Geography, Trier University, Trier, Germany

EGU22-7914, EGU General Assembly 2022, Session SSS6.6 "Soil structure, its dynamics and its relevance to soil functions"

Introduction

Main strategies to avoid compaction risks in agricultural practice

- Avoiding field traffic on soils with high soil moisture
- Adapting machinery to current compaction susceptibility

Objective: Finding suitable modelling approach for decision support system

Further goal of SoFI-project: Web-based application for farmers

Model selection

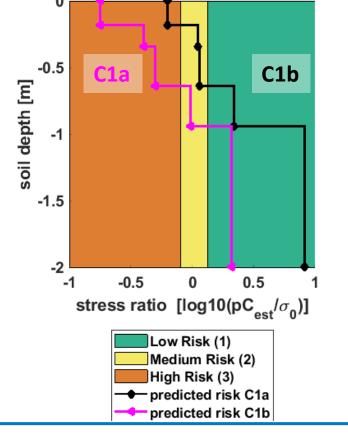
Pre-selection from published approaches

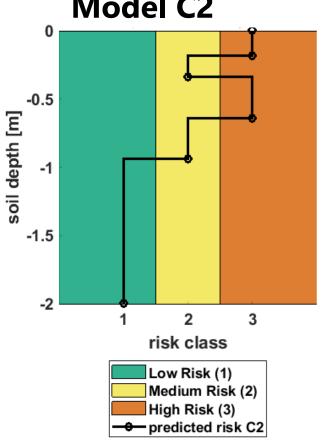
- Semi-physical approach: Model C1a and Model C1b
 - Modelled precompression stress versus analytically calculated stress in soil
 - C1a and C1b mainly differ in the calculation methods
 - Model C1a: Uniform stress distribution and transmission (Horn & Fleige, 2003)
 - Model C1b: Distributed stress distribution and transmission (Keller et al., 2007)
- Conceptual approach: Model C2
 - Classes for compaction susceptibility and stress by machinery
 - Decision-matrix for risk classification

(Lorenz et al., 2016; Ledermüller et al., 2018)

Wheeling experiments

	E1 Sponheim 2019	E2 Sponheim 2021	E3 Trier 2020
Texture	Sandy loam	Sandy loam	Clayey loam
Soil moisture (% field capacity)	91	84	93
Max. wheel load (tons)	3.63	7.34	3.20
Max. inflation pressure (bar)	1.2	4.0	1.2





Exemplary modelling results

Semi-physical: Models C1a and C1b

Conceptual **Model C2**

Example: Results for E2

Application of all models to

- **All experiments**
- All sampled depths

Validation of risk-classes

Thresholds for soil physical parameters

- Air capacity < 5 v%/< 8 v% (topsoil)
- Saturated water conductivity < 10 cm/d
- Air permeability < 10 μm²

Risk classes derived from measurements

No parameter : Class 1

1 parameter : Class 2

2 or 3 parameters: Class 3

Model-predicted risk classes

Low risk: Class 1
Medium risk: Class 2
High risk: Class 3

Statistics: Cohen's K

agreement between modelled an measured classes

Model	Cohen's к	
C1a	0.09	
C1b	0.18	
C2	0.04	

Range:

 κ = 1: full agreement

 κ = 0: only random agreement

Validation of risk-classes

Thresholds for soil physical parameters

- Air capacity < 5 v%/< 8 v% (topsoil)
- Saturated water conductivity < 10 cm/d
- Air permeability < 10 μm²

Risk classes derived from measurements

No parameter : Class 1 1 parameter : Class 2

2 or 3 parameters: Class 3

Model-predicted risk classes

Low risk: Class 1
Medium risk: Class 2
High risk: Class 3

Statistics: Cohen's K

agreement between modelled an measured classes

Model	Cohen's к	
C1a	0.09	
C1b	0.18	
C2	0.04	

Range:

 κ = 1: full agreement

 κ = 0: only random agreement

Validation of risk-classes

Thresholds for soil physical parameters

- Air capacity < 5 v%/< 8 v% (topsoil)
- Saturated water conductivity < 10 cm/d
- Air permeability < 10 μm²

Risk classes derived from measurements

No parameter: Class 1
1 parameter: Class 2
2 or 3 parameters: Class 3

Model-predicted risk classes

Low risk: Class 1
Medium risk: Class 2
High risk: Class 3

Statistics: Cohen's K

agreement between modelled an measured classes

Model	Cohen's к	
C1a	0.09	
C1b	0.18	
C2	0.04	

Range:

 κ = 1: full agreement

 κ = 0: only random agreement

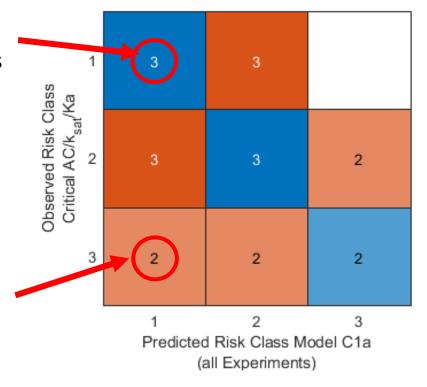
Conclusion

- C1b currently most suitable
- Further development of C1b

Thank you for your kind attention

...and thank you to everyone involved in the experiments!

Validation


Visualization of agreement between classes in confusion matrices

Example A:

Number of cases, where model predicts class 2 but measurements result in class 1

Example B:

Number of cases, where model predicts class 1 but measurements result in class 3

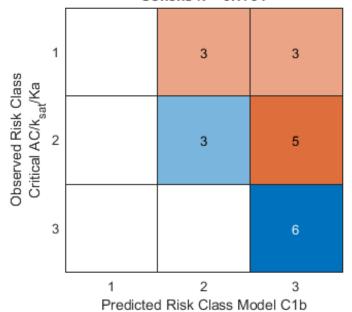
High frequency of disagreement

High frequency of agreement

Validation

Thresholds for soil physical parameters

- Air capacity < 5 v%/< 8 v% (topsoil)
- Saturated water conductivity < 10 cm/d
- Air permeability < 10 μm²


Risk classes derived from measurements

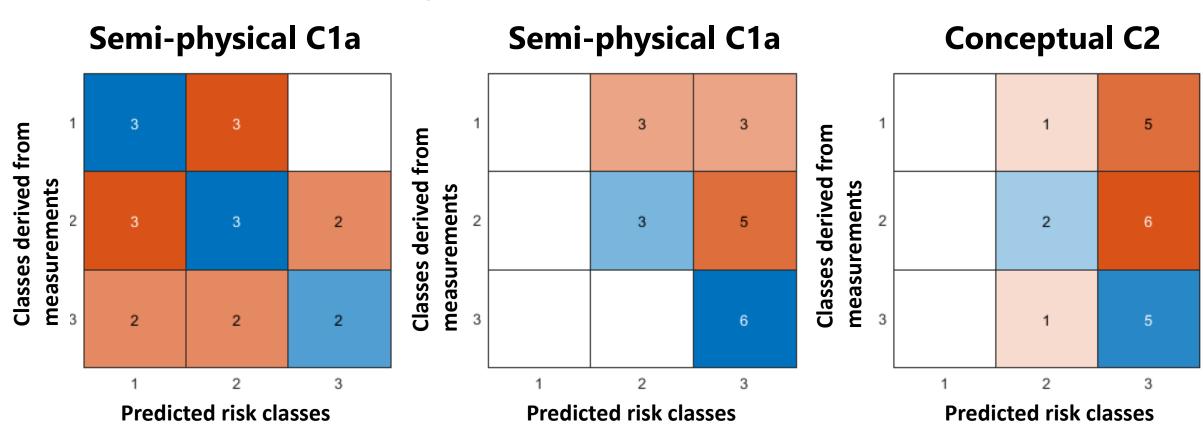
No parameter: Class 1 1 parameter: Class 2 2 or 3 parameters: Class 3

Predicted risk classes

Low risk: Class 1
Medium risk: Class 2
High risk: Class 3

Confusion Matrix Model C1b for all Experiments Cohens κ = 0.1791

Predicted Risk Class Model C1I (all Experiments)



Validation

Visualization of agreement between classes in confusion matrices

Cohen's K for class-based model assessment

- Indicator: Cohen's $K = \frac{p0 pc}{1 pc}$ calculated from confusion matrix
 - *po*: observed agreement
 - *pc*: hypothetical agreement by chance
- Complete agreement: K = 1
- Agreement same as by chance: K = 0
- K < 0 indicates less agreement than expected by chance

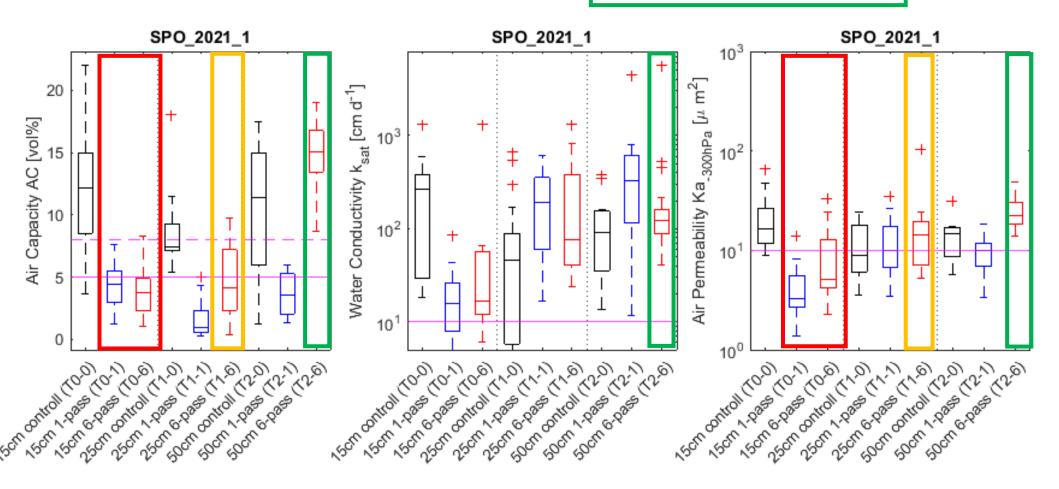
Used as a relative score of model performance **between** selected modelling approaches

(Cohen, 1960; Jeness & Wynne, 2005; Landis & Koch, 1977; Castaldi et al., 2018)

Observed compaction effects

- Thresholds for key physical soil properties:
 - air capacity:
 - AC < 5 vol% (subsoil)
 - AC < 8 vol.% (topsoil)
 - saturated water conductivity: k_sat < 10 cm/d
 - air permeability: Ka < 10 μm^2
- Classification after wheeling experiments (applied to median values)
 - No parameter below threshold: Class 1 (Low Risk of Compaction)
 - 1 parameter below threshold: Class 2 (Medium Risk)
 - 2 or 3 parameters below threshold: Class 3 (High Risk)

(Zink et al., 2016; Brunotte et al., 2015; Kmoch & Hanus, 1965; Lebert et al., 2004)



1 of 3 parameters < threshold

Measured data from E2

No Parameter < threshold

Selected modelling approaches

	C1a: semi-physical	C1b: semi-physical	C2: conceptual
Soil strength	Precompression stress, soil moisture dependent		Classification of compaction susceptibility
Soil stress/load of machinery	Semi-analytical stress transmission uniform stress at surface	Semi-analytical stress stransmission distributed stress at surface	Classification of load-index of machinery
Risk classification	Ratio of stress/pV, classified in three risk classes		Combination of classes for load and susceptibility
	(Lebert, 2010; Horn & Fleige, 2003; Rücknagel et al., 2012,2015; Newmark, 1942)	(Lebert, 2010; Rücknagel et al., 2012,2015; Söhne, 1953; Keller et al., 2003;)	(Lorenz et al., 2016; Ledermüller et al., 2018; Brunotte et al., 2015)