
1.  Introduction
Accurately representing the sea floor has always been a challenge for the ocean modeling community. Quantify-
ing the full influence of the sea floor on model circulations is important for both future model development and 
the interpretation of results from existing models. We present a diagnostic method that reveals how bottom topog-
raphy influences the depth-integrated vorticity budget of general circulation models (GCMs) and we identify 
significant spurious forces that emerge from the discrete Coriolis force when calculated on a C-grid (Mesinger & 
Arakawa, 1976) using z-coordinates.

The recent article by Stewart et al. (2021) also studied the impact of bottom topography on vorticity budgets. 
However, the model used by Stewart et al. (2021) is a two layer isopycnal model where the bottom topography 
is completely contained in the lower density layer. In this article we consider models that have a higher vertical 
resolution and a step-like bathymetry. It is in these more commonly used models that we identify a new category 
of spurious forces.

The textbook theory of gyres relies on the idea of a depth-integrated vorticity budget and gyres can be classified 
by the leading order terms in the depth-integrated vorticity equation. For example, the Stommel  (1948) gyre 
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is dominated by wind stress curl, lateral bottom friction, and the beta effect. In another example, Niiler (1966) 
analytically integrated the vorticity equation over the area enclosed by gyre streamlines to study inertial gyres 
dominated by the wind stress curl, the advection of vorticity, and lateral bottom friction.

GCMs have a primitive momentum equation with an associated vorticity budget. By taking the curl of the 
depth-integrated terms from the primitive momentum equation we can calculate the corresponding terms in the 
model's depth-integrated vorticity equation (referred to as vorticity diagnostics hereafter). The vorticity diagnos-
tics can then be integrated over the area enclosed by gyre streamlines to reveal the model forces responsible for 
spinning the gyre up and down. In this article we diagnose the vorticity budget of gyres in two case studies using 
the NEMO model (Madec et al., 2019). We consider a simple double gyre configuration with analytic forcing 
and idealized geometry which resembles a North Atlantic basin. We also consider the vorticity budget of the 
Weddell Gyre in a realistic configuration of the global ocean. In both of these case studies we identify spurious 
force profiles with different characteristics. In the light of these results, we discuss potential changes to the model 
discretizations that could mitigate the spurious forces.

The article is structured as follows. We first discuss the analytic depth-integrated vorticity budget in Section 2 as 
well as the analytic method of contour integration. In Section 3 we consider how the depth-integrated vorticity 
budget behaves on a C-grid with step-like bathymetry and how spurious terms emerge from the discrete Coriolis 
acceleration. Results from the analytically forced double gyre model are presented in Section 4 and results for 
the Weddell Gyre are presented in Section 5. A discussion of approaches to avoid the spurious forcing terms can 
be found in Section 6. Closing remarks are given in Section 7. In Appendix A we derive the depth-integrated 
vorticity equation and in Appendix  B we present the discrete forms of the Coriolis acceleration for various 
vorticity schemes. Appendix C presents results from the double gyre model using various forms of the discrete 
Coriolis acceleration. Appendix D presents contour integrations of uninterpolated diagnostics from the double 
gyre model.

2.  The Analytic Vorticity Budget
2.1.  The Depth-Integrated Vorticity Equation

Vorticity diagnostics are an underused tool for interpreting model circulations and offer a description of gyre 
dynamics that complements textbook theory (Vallis, 2017). A handful of recent papers have used a vorticity 
budget to diagnose regional and global GCM models (Hughes & de Cuevas, 2001; Le Bras et al., 2019; Le Corre 
et al., 2020; Schoonover et al., 2016; Yeager, 2015).

To obtain a depth-integrated vorticity budget analytically we start from the vector-invariant form of the momen-
tum equation:

𝜕𝜕𝐮𝐮𝐡𝐡

𝜕𝜕𝜕𝜕
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Where f is the Coriolis parameter, uh is the ‘‘horizontal’’ (parallel to the Earth's surface) velocity vector, 𝐴𝐴 
𝐮𝐮 is 

the vertical divergence of the vertical diffusive momentum fluxes (which relates to the surface momentum fluxes 
when vertically integrated), 𝐴𝐴 

𝐮𝐮 is the horizontal divergence of the horizontal diffusive momentum fluxes, ∇h is 
the horizontal gradient operator, and [ ⋅ ]h is the horizontal component of a vector. To derive a depth-integrated 
vorticity equation, we need to depth-integrate and take the curl of Equation 1. The order of the two operations 
and any multiplications carried out significantly alters the form and physical meaning of the obtained depth-in-
tegrated vorticity equation.

If we choose to depth-integrate the curl of the momentum equation, the pressure gradient vanishes upon taking 
the curl and bottom vortex stretching represents the interaction of the currents with the sea floor. Both the beta 
effect and bottom vortex stretching originate from the Coriolis acceleration in Equation 1. In the model, the curl 
of the single momentum diagnostic associated with the Coriolis acceleration will be responsible for two distinct 
physical processes. Jagannathan et al. (2021) use this form of vorticity budget to investigate flow interactions 
with idealized bathymetry. In Section 6.2 we discuss whether the spurious forces identified in this article emerge 
in this vorticity budget.
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If we choose to take the curl of the depth-averaged momentum equation then sea floor interactions are repre-
sented by the JEBAR term (Joint Effect of Baroclinicity and Relief). Cane et al. (1998) and Drijfhout et al. (2013) 
have questioned the relevance of JEBAR by presenting simple examples in which there is no flow immediately 
above the bathymetry. In these examples there is trivially no interaction between the flow and the bathymetry, but 
there is a non-zero JEBAR term.

Throughout this paper we consider the vorticity equation obtained by taking the curl of the depth-integrated 
momentum equation:

𝜕𝜕

𝜕𝜕𝜕𝜕
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Here ζ is the vertical component of the vorticity, τtop is the surface stress due to wind and sea ice, τbot is the 
bottom stress due to friction at the sea floor, 𝐴𝐴 𝜁𝜁 is the lateral diffusion of depth-integrated relative vorticity, η is 
the free surface height, H is the depth of the sea floor, and Pb is the pressure at the sea floor. In Equation 2 we 
omit the contribution from free surface undulations as we assume the time evolution of the free surface is small 
and we omit atmospheric pressure torques as we are assuming there are no atmospheric pressure gradients above 
the  ocean. The derivation of Equation 2 (including the omitted terms) is presented in Appendix A.

The terms on the right-hand side of Equation 2 are the following: the advection of planetary vorticity; the bottom 
pressure torque; the surface stress curl; the curl of bottom friction; the lateral diffusion of relative vorticity; and 
the advection of relative vorticity. The planetary vorticity term in Equation 2 contains contributions from the 
evolving free surface and surface water fluxes as ∇h ⋅ U = −∂η/∂t + Q/ρ0, where Q is the surface water flux due 
to evaporation, precipitation, and run-off. In an equilibrated state, the free surface evolution is small and the 
divergence caused by realistic water fluxes is negligible. Hence, we assume 𝐴𝐴 ∇ℎ ⋅ (𝑓𝑓𝐔𝐔) ≈ 𝛽𝛽𝛽𝛽  where β represents 
the linear variation of f with latitude and V is the meridional component of the depth-integrated velocity. This 
formulation is practical as topographic interactions emerge from pressure gradients in the form of the bottom 
pressure torque and beta effects emerge from the curl of the Coriolis acceleration; the Coriolis acceleration is 
responsible for one physically meaningful term in the analytic vorticity budget. Equation 2 is also used in Stewart 
et al. (2021).

Jackson et al. (2006) conclude that the leading order balance between bottom pressure torques and the planetary 
vorticity term in Equation 2 is crucial for steering jets and western boundary currents over bottom topography. 
They continue to argue that the form of the topographic steering determines if bottom friction is able to modify 
the geometry of the current.

As a consequence of Stokes' theorem, the area integral of a term from Equation 2 is directly related to the line 
integral of the depth-integrated forces along the area edge. This is particularly useful when considering area inte-
grals of terms from the vorticity equation and is discussed further in the next sub-section.

2.2.  Contour Integration Method

All terms in the depth-integrated vorticity equation can be expressed as the curl of a depth-integrated acceleration 
in the momentum equation:

Ω = (∇ ×𝐌𝐌) ⋅ 𝐤̂𝐤,� (3)
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where Ω is a term in the depth-integrated vorticity equation and M is a term in the depth-integrated momentum 
equation. If we integrate Ω over the area enclosed by a depth-integrated streamline, we can interpret the integral 
using Stokes' theorem:

�(�) = ±∬��

Ω �� = ±∮Γ�

M ⋅ dl,� (4)

Where Aψ is the area enclosed by a depth-integrated streamline and Γψ is the anticlockwise path along the same 
streamline. The criteria for selecting the sign in Equation 4 is defined later in this paragraph. The depth-integrated 
stream function, ψ, only exists if the flow is steady and ∇h ⋅ U = 0. If a long time-average of a varying flow is 
taken and the surface water fluxes are sufficiently small, a quasi-streamline can be calculated which approxi-
mately follows the circulation. The integral ρ0I(ψ) can be interpreted as the work done per unit area by the force 
associated with M on a fluid column in one circulation of Γψ. For a gyre circulating in a clockwise direction, the 
direction of circulation would be opposite to the conventional anticlockwise direction of Γψ. So that the reader 
does not have to constantly consider the direction of the flow relative to Γψ we select the sign in Equation 4 so a 
positive value of I(ψ) corresponds to a force that is spinning the gyre up.

Analytically, we would expect the planetary vorticity term to vanish upon integration as a consequence of the 
divergence theorem:

∬��

∇ℎ ⋅ (�U) �� = ∮Γ�

�U ⋅ n̂ �� = 0,� (5)

where 𝐴𝐴 𝐧̂𝐧 is the horizontal vector which is normal to the streamline and the depth-integrated velocity. The Corio-
lis force can still play a role in shaping the streamlines of the circulation but ultimately has no influence on the 
integrated budget. Although the divergent part of the advection term, 𝐴𝐴 ∇ℎ ⋅

(∫ 𝜁𝜁𝐮𝐮 𝑑𝑑𝑑𝑑) , has a similar form, we do 
not expect the same zero integral for this term as the depth-integrated product of ζ and u is not parallel to U in 
general.

This method has been used in models before. Schoonover et al. (2016) integrated vorticity diagnostics over a 
limited number of streamlines in the North Atlantic and concluded that the wind stress curl is largely balanced 
by bottom pressure torques. Stewart et al. (2021) also used this method in an isopycnal model and concluded 
that wind stress curl is not balanced by bottom pressure torques in general. Stewart et al. (2021) discuss how the 
integrating area affects the resultant vorticity balances and in their model the wind stress curl is only balanced 
by bottom pressure torques when integrated over latitude bands. Jackson et al. (2006) note that in their idealized 
models the vorticity input from bottom friction mostly disappears when integrated over latitude bands but can be 
significant when integrated over the area enclosed by streamlines.

In Gula et al. (2015), terms in the barotropic vorticity budget are integrated over an entire subdomain covering the 
South Atlantic Bight to study the interaction between the Gulf Stream and the continental shelf. Flow through the 
boundaries of the nested model is permitted so we would not expect the planetary vorticity term to vanish upon 
integration. These integrations show a leading order balance between the planetary vorticity term and bottom 
pressure torques and suggest that bottom pressure torques are the dominant mechanism for removing the plane-
tary vorticity imported into the subdomain by the Gulf Stream.

It should be noted that Schoonover et al. (2016), Stewart et al. (2021), Jackson et al. (2006), and Gula et al. (2015) 
all use a terrain-following coordinate in their models but in this article we study the vorticity budget of a z-coordi-
nate model. In Section 6.4 we discuss how the vorticity budget can be affected by the choice of vertical coordinate 
and how terrain-following coordinates can mitigate spurious Coriolis forces related to the topography.

3.  The Vorticity Budget on a C-Grid
3.1.  The Discrete Depth-Integrated Vorticity Equation

In many contemporary ocean GCMs, the discretized model variables are distributed on the C-grid (Mesinger & 
Arakawa, 1976). The geometry of the C-grid is shown in Figure 1: T points hold scalar information including 
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the divergence of the flow; the U and V points hold the horizontal components of vector quantities including 
the horizontal velocity, surface stresses, and accelerations in the momentum equation. Values closely related to 
vorticity are found on F points, this includes the relative vorticity, the streamfunction, and terms in the depth-in-
tegrated vorticity equation (Ω). Vertical velocities are located on W points that are directly above and below T 
points as shown in Figure 1. The Coriolis parameter can be evaluated at any point on the C grid but F point values 
are used for calculating the Coriolis acceleration in most models that use a vector invariant momentum equation 
because the relative and planetary vorticity are then evaluated at the same point (see Section 3.2). In this article, 
fi,j refers to the value of the Coriolis parameter centered on the F point and 𝐴𝐴 𝐴𝐴𝑢𝑢

𝑖𝑖𝑖𝑖𝑖

(

𝑓𝑓𝑣𝑣
𝑖𝑖𝑖𝑖𝑖

)

 refers to the Coriolis param-
eter centered on the U (V) point as shown in Figure 1.

Every point in the C-grid has an associated cell with a vertical thickness and horizontal width. Throughout this 
article e 3t is the T cell vertical thickness and e 1t, e 2t are the T cell widths in the i and j direction respectively. The 
same convention is used for U, V, and F cells also. It should be noted that the values of the F cell thicknesses in 
this article depend on the scheme used to calculate the Coriolis acceleration (see Section 3.2).

The GCM configurations discussed in this paper use a primitive momentum equation that is a discrete equivalent 
to the vector invariant momentum equation (Madec et al., 2019). Momentum diagnostics can be combined to 
represent terms in the analytic momentum equation (Equation 1). The curl of the depth-integrated momentum 
diagnostics is taken to form a closed discrete vorticity budget that is valid in an unsteady state as the time deriva-
tive diagnostic is included. The resultant vorticity diagnostics should closely resemble the terms in the depth-in-
tegrated vorticity equation (Equation 2); however, the planetary vorticity diagnostic deviates from the planetary 
vorticity term in several significant ways.

3.2.  The Discrete Coriolis Acceleration

The Coriolis acceleration is a product of the Coriolis parameter, f, and the horizontal velocity uh. There are many 
possible schemes for calculating their product and the choice of scheme affects the quantities that are conserved 
in the model flow.

Consider the following discrete Coriolis acceleration:

COR𝑥𝑥
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

=
1

4

1

(𝑒𝑒1𝑢𝑢𝑒𝑒3𝑢𝑢)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

4
∑

𝑛𝑛=1

𝑓𝑓𝑣𝑣 (𝐫𝐫𝑛𝑛)𝑉𝑉𝑘𝑘 (𝐫𝐫𝑛𝑛) ,

COR
𝑦𝑦

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
=

−1

4

1

(𝑒𝑒2𝑣𝑣𝑒𝑒3𝑣𝑣)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

4
∑

𝑛𝑛=1

𝑓𝑓𝑢𝑢 (𝐫𝐫𝑛𝑛) 𝑈̃𝑈𝑘𝑘 (𝐫𝐫𝑛𝑛) ,

� (6)

Figure 1.  The distribution of variables on the C-grid in both a three dimensional (left) and horizontal (right) view. The T, U, 
V, F, and W points are shown alongside important values that are centered on these points. The T, U, V, and F points at the 
coordinate (i, j, k) lie on the four corners of the gray square. The variable w is the vertical velocity and Mu, Mv are the x and y 
components of a term in the momentum equation. Note that k increases downwards.
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where COR x (COR y) is the x (y) component of the discrete Coriolis acceleration which is centered on a U (V) 
point; 𝐴𝐴 𝑉𝑉 = 𝑣𝑣𝑣𝑣1𝑣𝑣𝑒𝑒3𝑣𝑣 and 𝐴𝐴 𝑈̃𝑈 = 𝑢𝑢𝑢𝑢2𝑢𝑢𝑒𝑒3𝑢𝑢 are volume fluxes; and rn points to one of the four neighboring V or U points. 
If we depth-integrate the acceleration in Equation 6 and then take the curl, we obtain the following equation for 
the discrete planetary vorticity term:

PVO𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −
1

4

1

(𝑒𝑒1𝑓𝑓 𝑒𝑒2𝑓𝑓 )𝑖𝑖𝑖𝑖𝑖

[

(

𝑓𝑓𝑢𝑢𝑈𝑈𝑈𝑈2𝑢𝑢
)

𝑖𝑖+1,𝑗𝑗
+
(

𝑓𝑓𝑢𝑢𝑒𝑒2𝑢𝑢𝑈𝑈
)

𝑖𝑖+1,𝑗𝑗+1

−
(

𝑓𝑓𝑢𝑢𝑈𝑈𝑈𝑈2𝑢𝑢
)

𝑖𝑖−1,𝑗𝑗
−
(

𝑓𝑓𝑢𝑢𝑈𝑈𝑈𝑈2𝑢𝑢
)

𝑖𝑖−1,𝑗𝑗+1

+
(

𝑓𝑓𝑣𝑣𝑉𝑉 𝑉𝑉1𝑣𝑣
)

𝑖𝑖𝑖𝑖𝑖+1
+
(

𝑓𝑓𝑣𝑣𝑉𝑉 𝑉𝑉1𝑣𝑣
)

𝑖𝑖+1,𝑗𝑗+1

−
(

𝑓𝑓𝑣𝑣𝑉𝑉 𝑉𝑉1𝑣𝑣
)

𝑖𝑖𝑖𝑖𝑖−1
−
(

𝑓𝑓𝑣𝑣𝑉𝑉 𝑉𝑉1𝑣𝑣
)

𝑖𝑖+1,𝑗𝑗−1

]

,

� (7)

where PVO is the discrete planetary vorticity term which is centered on an F point. Equation 7 is the discrete 
calculation of −∇ℎ ⋅ (�U) averaged over the four T cells surrounding the central F point and is therefore closely 
related to the analytic planetary vorticity term in Equation 2. The Coriolis acceleration given in Equation 6 is not 
used in C-grid models as it lacks the energy and/or enstrophy conserving properties of other mainstream schemes. 
However, when studying the discrete depth-integrated vorticity budget it is useful to consider how the used Cori-
olis accelerations deviate from this reference value as any difference may emerge as a departure from the discrete 
calculation of −∇ℎ ⋅ (��) in the vorticity budget.

When using a vector invariant momentum equation, mainstream schemes use multi-point and thickness-weighted 
averaging of f and u in order to conserve energy and/or enstrophy (Madec et al., 2019). A general form of the 
discrete Coriolis acceleration under these schemes is:

COR
𝑥𝑥
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

=
1

𝑁𝑁

1

𝑒𝑒1𝑢𝑢
𝑖𝑖𝑖𝑖𝑖

𝑁𝑁
∑

𝑛𝑛=1

(

𝑓𝑓 (𝐚𝐚𝐧𝐧)

𝑒𝑒3
𝑘𝑘
(𝐛𝐛𝑛𝑛)

)

𝑉𝑉𝑘𝑘 (𝐜𝐜𝐧𝐧) ,� (8)

COR
𝑦𝑦

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
=

−1

𝑁𝑁

1

𝑒𝑒2𝑣𝑣
𝑖𝑖𝑖𝑖𝑖

𝑁𝑁
∑

𝑛𝑛=1

(

𝑓𝑓 (𝐚𝐚𝐧𝐧)

𝑒𝑒3
𝑘𝑘
(𝐛𝐛𝑛𝑛)

)

𝑈̃𝑈𝑘𝑘 (𝐜𝐜𝐧𝐧) ,� (9)

Where an, bn, and cn are the horizontal locations of three neighboring grid points (not necessarily different) for the 
nth term of the sum. COR x and COR y are still centered on U and V points respectively. Note that an is always the 
location of an F point and cn is always the location of a U or V point. Depending on the scheme, the 𝐴𝐴 𝐴𝐴3

𝑘𝑘
 term can 

be either a U, V, or F cell thickness so bn is the location of either a U, V, or F point. N is the number of terms in 
the average which depends on the choice of scheme. Equations 8 and 9 are valid on points near the bathymetry but 
if bn or cn points to a masked grid point (a point in the bathymetry) then the nth term in the sum is equal to zero.

In this article we consider three popular schemes for calculating the Coriolis acceleration. The energy conserving 
scheme (ENE) (Sadourny, 1975) conserves total horizontal kinetic energy and uses a four point average (N = 4). 
The enstrophy conserving scheme (ENS) (Sadourny, 1975) conserves potential enstrophy and has eight terms 
(N = 8). Finally the energy and enstrophy conserving scheme (EEN) (Arakawa & Lamb, 1981) conserves both 
horizontal kinetic energy and potential enstrophy and uses a 12 point average (N = 12). Barnier et al.  (2006) 
demonstrates that the choice of scheme can significantly influence the global ocean circulation, especially in 
areas with strong current-topography interaction.

The explicit forms of the ENE, ENS, and EEN schemes for the Coriolis acceleration are given in Appendix B. 
The results in Section 4 and 5 use the EEN scheme; however, in Section 6.1 we argue that all three schemes 
produce similar spurious forces. This argument is more concise when we use a form of the Coriolis acceleration 
that is general to the ENE, ENS, and EEN schemes.

We will decompose the general discrete Coriolis acceleration in Equations 8 and 9 by considering variations of f 
and e 3 around the U and V points:

� (��) = � (��) + [� (��) − � (��)] ,� (10)

�3� (��) =
1

��(��)
(

�3��,�,� +
[

�� (��) �3� (��) − �3��,�,�
])

,� (11)
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𝑒𝑒3
𝑘𝑘
(𝐛𝐛𝑛𝑛) =

1

𝛼𝛼𝑘𝑘 (𝐛𝐛𝑛𝑛)

(

𝑒𝑒3𝑣𝑣
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+
[

𝛼𝛼𝑘𝑘 (𝐛𝐛𝑛𝑛) 𝑒𝑒
3

𝑘𝑘
(𝐛𝐛𝑛𝑛) − 𝑒𝑒3𝑣𝑣

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

])

,� (12)

Where fcn) is the value of the Coriolis parameter centered on the same point as the volume flux. Equation 11 
will be applied to COR x (Equation 8) and Equation 12 will be applied to COR y (Equation 9). The αk (bn) term is 
of order one and represents the scaling of 𝐴𝐴 𝐴𝐴3

𝑘𝑘
 relative to other local cell thicknesses that only occurs in the EEN 

scheme. In the EEN scheme, 𝐴𝐴 𝐴𝐴3
𝑘𝑘
(𝐛𝐛𝑛𝑛) is an F cell thickness and F cell thicknesses are calculated using:

𝑒𝑒
3𝑓𝑓

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
=

1

4

(

𝑒𝑒3𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝑒𝑒3𝑡𝑡
𝑖𝑖+1,𝑗𝑗𝑗𝑗𝑗

+ 𝑒𝑒3𝑡𝑡
𝑖𝑖𝑖𝑖𝑖+1,𝑘𝑘

+ 𝑒𝑒3𝑡𝑡
𝑖𝑖+1,𝑗𝑗+1,𝑘𝑘

)

,� (13)

Where masked T cell thicknesses are set to zero. When near bathymetry (masked points), the F cell thickness 
could be up to four times smaller than the typical unmasked T cell thicknesses surrounding it. The product 𝐴𝐴 𝐴𝐴𝑘𝑘𝑒𝑒

3𝑓𝑓

𝑘𝑘
 

is the F cell thickness before this scaling is applied and will be more similar to the neighboring T cell thicknesses 
in Equation 13. This scaling of e 3f is unique to the EEN scheme and therefore αk = 1 in the ENS and ENE cases.

By combining Equations 8–12 we can derive a general decomposition of the Coriolis acceleration:

COR�
�,�,� =

1
�

1
(�1��3�)�,�,�

�
∑

�=1
� (��) �̃� (��)

⎡

⎢

⎢

⎢

⎢

⎣

1 +
� (��) − � (��)

� (��)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

�displacement

+ �� (��)
�� (��) �3� (��) − �3��,�,�

�3��,�,�
+ [�� (��) − 1]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cell thicknesses

+ [�� (��) − 1]
� (��) − � (��)

� (��)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Coupled �−topographic

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

COR�
�,�,� =

−1
�

1
(�2
�3
)�,�,�

�
∑

�=1
� (��) �̃� (��)

⎡

⎢

⎢

⎢

⎢

⎣

1 +
� (��) − � (��)

� (��)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

�displacement

+ �� (��)
�� (��) �3� (��) − �3
�,�,�

�3
�,�,�
+ [��(��) − 1]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cell thicknesses

+ [��(��) − 1]
� (��) − � (��)

� (��)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Coupled �−topographic

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

� (14)

where we have assumed that variations in f and the nonscaled cell thickness, 𝐴𝐴 𝐴𝐴𝑘𝑘𝑒𝑒
3

𝑘𝑘
 , are small. The x and y compo-

nents of the Coriolis acceleration have a leading order contribution centered on the U and V point. The leading 
order term simplifies to the reference Coriolis acceleration in Equation 6 and therefore will resemble 𝐴𝐴 − ∇ℎ ⋅ (𝑓𝑓𝐔𝐔) 
in the discrete vorticity budget. Equation 14 is valid on points near the bathymetry but if bn or cn points to a 
masked grid point then the nth term of the entire sum is equal to zero.

The remaining terms may emerge as first order departures from 𝐴𝐴 − ∇ℎ ⋅ (𝑓𝑓𝐔𝐔) in the discrete vorticity budget. The 
first order contributions are: an f displacement term caused by the difference between the values of f where the 
volume fluxes are located and the values of f used in the scheme; a topographic effect caused by variations in cell 
thicknesses; and a coupled f-topographic effect caused by the combined effect of sudden changes in cell thick-
nesses near masked points and the previously mentioned f displacement term. Note that if α = 1 (true for ENS 
and ENE) then the f-topographic effect vanishes.

The depth-integrated Coriolis acceleration is:

ĈOR
�
�,� =

��max (�,�)
∑

�=1
�3��,�,�COR

�
�,�,�,

ĈOR
�
�,� =

��max (�,�)
∑

�=1
�3��,�,�COR

�
�,�,�,

� (15)
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Where 𝐴𝐴 𝐴𝐴𝑥𝑥
max

 and 𝐴𝐴 𝐴𝐴
𝑦𝑦
max

 are the highest unmasked indices in the column and they may vary with horizontal index 
when z-coordinates are used. The depth-integrated Coriolis acceleration is therefore also sensitive to steps in the 
bathymetry. This is discussed in the next sub-section.

3.3.  The Influence of Model Level Steps on the Coriolis Acceleration

In this section, we present a toy configuration that highlights how model levels can influence the discrete Coriolis 
acceleration. The configuration is shown in Figure 2. The configuration has two model levels, three U-grid points 
in the i direction, two in the j direction, and a rigid lid. The points in the upper level are surrounded by unmasked 
points, we assume the grid is regular, and cell widths are the same in the i and j direction. We also assume an 
f-plane so f does not vary.

The configuration has a step bathymetry and a current running alongside it. The current has no y component so 
v = 0 everywhere and therefore COR x = 0 at all points. The lower limb of the current decelerates by an amount u1 
and as a consequence of incompressibility a vertical velocity is induced which accelerates the upper current by u1.

Under these assumptions, the discrete Coriolis acceleration does not vary between the ENE, ENS, and EEN 
schemes and is:

Figure 2.  A toy model demonstrating how model levels influence the discrete Coriolis acceleration. A horizontal plan is 
shown for the upper and lower level as well as a view of the depth-integrated fields divided by the cell thickness Δz. Single 
arrows represent prescribed velocities; double arrows represent calculated Coriolis accelerations; and shaded cells represent 
bottom topography. Accelerations on the lower level are masked to prevent the velocity field from evolving into a flow that 
would violate the no penetration boundary condition. The central F point is marked by a cross and is where the depth-
integrated vorticity is generated.
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COR
𝑦𝑦

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
=

𝑓𝑓

4

[

𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗𝑗𝑗𝑗 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑖+1,𝑘𝑘 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗+1,𝑘𝑘
]

,� (16)

Which is effectively f multiplied by the four point average of u.

In the upper layer, the Coriolis accelerations, located on the V points marked by red triangles in Figure 2, are:

COR
𝑦𝑦

1,1,𝑘𝑘=1
= 𝑓𝑓𝑓𝑓0,� (17)

COR
𝑦𝑦

2,1,𝑘𝑘=1
=

𝑓𝑓

4
(4𝑢𝑢0 + 𝑢𝑢1) .� (18)

In the lower layer, the Coriolis accelerations are set to zero as they lie on masked V points. The V points are 
masked to prevent accelerations into the topography that would violate the no penetration boundary condition. 
The depth-integrated Coriolis accelerations are:

ĈOR
𝑦𝑦

1,1 = COR
𝑦𝑦

1,1,𝑘𝑘=1
Δ𝑧𝑧𝑧� (19)

ĈOR
𝑦𝑦

2,1 = COR
𝑦𝑦

2,1,𝑘𝑘=1
Δ𝑧𝑧𝑧� (20)

Where Δz is the constant cell thickness. It should be noted that u1 vanishes when calculating the depth-integrated 
velocities but remains in the depth-integrated acceleration. The depth-integrated Coriolis acceleration depends on 
more than the depth-integrated velocities.

When we take the curl of the depth-integrated accelerations, we can see how a depth-integrated vorticity is 
generated:

1

Δ𝑥𝑥

[

ĈOR
𝑦𝑦

2,1 − ĈOR
𝑦𝑦

1,1

]

=
1

4

Δ𝑧𝑧

Δ𝑥𝑥
𝑓𝑓𝑓𝑓1,� (21)

Where Δx is the constant cell width. Note that this value is located on the central F point shown in Figure 2.

The pressure gradient, lateral diffusion term (unless no-slip boundary conditions are used), and the horizontal 
advection term are ambiguous on the masked velocity points at the edge of the bathymetry (e.g., the V points in 
the upper right diagram of Figure 2). An explicit momentum balance cannot be resolved and the Coriolis accel-
eration is the only non-zero and unambiguous acceleration into the sea floor. There should be no net acceleration 
into the bathymetry or else the no penetration boundary condition would be violated, so all accelerations that are 
incident on bathymetry are masked and set to zero. The masking of all accelerations can be interpreted as the 
addition of a spurious term to the discrete Coriolis acceleration. This spurious force is of unclear physical origin 
and is not realistic as it is localized to grid points that lie near model level steps. We can think of the result in 
Equation 21 as either the curl of this spurious force or as a form of spurious vortex stretching that takes place on 
F points near model level steps (cf. Bell, 1999).

3.4.  Decomposing the Planetary Vorticity Term

In Section 3.2 we concluded that the discrete Coriolis acceleration used in mainstream schemes contained spuri-
ous contributions caused by f displacement, variations in cell thicknesses, and a coupled f-topographic effect. 
In Section 3.3 we demonstrated how spurious contributions from model level steps exist in the depth-integrated 
discrete Coriolis acceleration. The four found spurious contributions have the potential to emerge in the planetary 
vorticity diagnostic which is calculated by taking the curl of the depth-integrated Coriolis acceleration:

PVO𝑖𝑖𝑖𝑖𝑖 =
1

(𝑒𝑒1𝑓𝑓 𝑒𝑒2𝑓𝑓 )𝑖𝑖𝑖𝑖𝑖

[

(

ĈOR
𝑦𝑦

𝑒𝑒2𝑣𝑣
)

𝑖𝑖+1,𝑗𝑗

−

(

ĈOR
𝑦𝑦

𝑒𝑒2𝑣𝑣
)

𝑖𝑖𝑖𝑖𝑖

−

(

ĈOR
𝑥𝑥

𝑒𝑒1𝑢𝑢
)

𝑖𝑖𝑖𝑖𝑖+1

+

(

ĈOR
𝑥𝑥

𝑒𝑒1𝑢𝑢
)

𝑖𝑖𝑖𝑖𝑖

]

.

� (22)

We can therefore express the planetary vorticity diagnostic as the sum of five components:
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PVO�,� = −∇ℎ ⋅ (��)|�,� + � displacement + cell thicknesses

+ � -topographic + model level steps
� (23)

Where  −∇h ⋅ (f U)∣i,j refers to the discrete divergence calculation in Equation  7 and is closely related to the 
analytic planetary vorticity term in Equation 2. The remaining terms are departures from the analytic estimate 
that emerge from using mainstream schemes to calculate the Coriolis acceleration and the masking of velocity 
points near the bathymetry.

The magnitude of these contributions may vary significantly between configurations so a general method for 
decomposing the planetary vorticity diagnostic is valuable. In order to calculate the decomposition of the plane-
tary vorticity diagnostic, we calculate the Coriolis acceleration under three different assumptions and then calcu-
late the corresponding contributions to the vorticity budget. An explicit calculation of −∇h ⋅ (f U) ∣i,j (Equation 7) 
is also needed. The calculations are listed in Table 1 along with the components from Equation 23 they include. 
By linearly combining the fields from each calculation we can isolate each component in Equation 23. The f-top-
ographic component is calculated by finding the difference between the complete planetary vorticity diagnostic 
and the sum of the four other components; therefore the five components add up to the complete planetary vortic-
ity diagnostic by construction.

3.5.  Contour Integration on a C-Grid

Calculating the curl on a C-grid is consistent with Stokes' law applied to an F cell, and integrating ∇ × M ⋅ k over 
several adjacent F cells is equivalent to a line integral of M around them (see Figure 3). As the streamfunction, ψ, 
is defined on F points we can approximate that the area enclosed by a streamline is a collection of interior F cells 
and that the area integral of vorticity diagnostics is the line integral of model accelerations around them. This 
is an approximation as we are assuming that the streamline follows the rectangular edges of the interior F cells 
but the resultant error is minimized if we first interpolate the points onto a sufficiently fine grid. The asymptotic 
value the contour integral tends toward as the interpolation resolution is increased should be free of area error. 
This method is applied to all contour integrals presented in Sections 4 and 5. Any non-topographic contributions 
to the contour integral that remains after the interpolation will be described as a numerical beta effect.

A numerical beta effect can emerge from −∇h ⋅ (f U)∣i,j even after being interpolated onto a fine grid as the diver-
gence is calculated over the four T cells that surround the central F point (see Equation 7). When the internal F 
points are summed within the contour, the local domains for calculating the grid point divergences will overlap 
meaning the resultant area integral will not satisfy the divergence theorem in general. Overlapping local domains 
are a requirement of the C-grid's horizontal geometry. In Section 6.3 we highlight how the divergence calculation 
on a B-grid only requires information from a single tracer cell. The local domains for calculating the divergence 
do not overlap when integrating on the B-grid and the associated numerical beta effect will not emerge.

Calculation 𝐴𝐴 − ∇ℎ ⋅

(

𝑓𝑓𝐮𝐮
)

  FD E3 FT MLV

Full diagnostic ✓ ✓ ✓ ✓ ✓

Assume f (an) = f (cn), e 3 = const ✓ × × × ✓

Assume e 3 = const ✓ ✓ × × ✓

Assume f (an) = f (cn) ✓ × ✓ × ✓

Calculate −∇h ⋅ (fU) ✓ × × × ×

Note. FD = f displacement term, E3 = Cell thicknesses term, FT = f-topographic term, MLV = Model levels steps term.

Table 1 
The Five Different Calculations of the Planetary Vorticity Term and the Components From Equation 23
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4.  A Double Gyre Model
4.1.  Details of the Configuration

The first experiment in this article is an idealized double gyre configuration based on the GYRE PISCES refer-
ence configuration in NEMO. The GYRE PISCES reference configuration has been used for a wide range of 
experiments (Lévy et al., 2010, 2015; Perezhogin, 2019; Ruggiero et al., 2015). The domain is a closed rectangu-
lar basin which is 3,180 km long, 2,120 km wide, and is rotated at an angle of 45° relative to the zonal direction. 
The basin exists on a beta plane where f varies linearly around its value at ∼30°N.

The model has a regular 122 × 82 grid that is aligned with the rotated basin. The horizontal resolution is equiv-
alent to a 1/4° grid at the equator and the configuration has 31 model levels. Two forms of bathymetry are used 
in this section. The FLAT configuration has a fixed depth of 4.5 km and no partial cells are used. The SLOPED 
configuration has a linear slope that extends from the North West side of the basin and spans half the basin (see 
Figure 4a). The maximum depth of the SLOPED configuration is 4.5 km, the minimum depth is 2 km, and partial 
cells are used to represent the slope.

The circulation is forced by sinusoidal analytic profiles of surface wind stress and buoyancy forcing. The wind 
stress is zonal and only varies with latitude so that the curl changes sign at 22°N and 36°N (see Figure 4b). The 
wind stress profile is designed to spin up a subpolar gyre in the north, a subtropical gyre in the south, and a 
small recirculation also emerges in the bottom corner. The net surface heat flux takes the form of a restoring to a 
prescribed apparent temperature. Further details about the buoyancy forcing can be found in Lévy et al. (2010). 
The wind stress and buoyancy forcing varies seasonally in a sinusoidal manner.

The model uses a free slip condition on all boundaries except at the bottom where a linear friction drag is applied. 
A simplified linear equation of state is used with a thermal expansion coefficient of a0 = 2 × 10 −4 kg m −3 K −1, 
and a haline coefficient of b0 = 7.7 × 10 −4 kg m −3 psu −1. Horizontal and biharmonic diffusion of momentum 
is implemented with a diffusivity of 5 × 10 10 m 4s −1. Biharmonic diffusion of tracers along isopycnals is imple-
mented with a diffusivity of 10 9 m 4s −1 (Lemarié, Debreu, et al., 2012; Madec et al., 2019).

The model is spun up for 60 years and the experiment was run for an additional 10 years with monthly mean 
outputs. A steady state is not required for the diagnostics to be valid as the time derivative term is present in the 
vorticity budget. A time step of 10 min is used for the model integration.

The EEN vorticity scheme is used for consistency with all analysis discussed in Section 3 and the results from 
the Weddell Gyre in Section 5. The EEN method calculates F cell thicknesses using the method described by 

Figure 3.  The application of Stokes' theorem on a C-grid. The vorticity diagnostic Ω is equivalent to the normalized line 
integral of M around a single F cell of area AF. The area integral of Ω over a collection of F cells (e.g., A3F) is equivalent to 
the line integral of M along the perimeter (e.g., Γ3F).
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Equation 13 and we therefore expect sudden changes in the F cell thickness near the domain edge for both the 
FLAT and SLOPED configurations.

4.2.  Methods

Momentum diagnostics are calculated for every time step and the discrete vorticity diagnostics are calculated 
by depth-integrating the momentum diagnostics and taking the curl. The resultant diagnostics are time-averaged 
over the 10 year experimental period. The extensive time-averaging will influence the advection vorticity diag-
nostic as there is an added contribution from the eddy vorticity flux.

For contour integration, the vorticity diagnostics and depth-integrated stream function are then linearly interpo-
lated onto a regular 1/12° grid. This is to minimize errors caused by the difference between the true enclosed 
streamline area and the total area of the enclosed F cells. Interpolation beyond 1/12° resolution makes little 
difference to the results, suggesting that the area error has been significantly suppressed.

For 1,001 values of ψ, closed streamline contours are identified using a marching squares algorithm from the 
scikit-image package (Van Der Walt et al., 2014). Streamlines that are near the recirculation gyre (south of 20°N) 
are ignored in this experiment and for some values of ψ no closed streamlines could be found. For each closed 
streamline found, the vorticity diagnostics are integrated over the area enclosed; this is equivalent to calculating 
I(ψ) in Equation 4 over many values of ψ. The freshwater fluxes mean that ∇h ⋅ U ≠ 0 even in a steady state and an 
exact stream function cannot be calculated. To test how closely the calculated streamlines follow the circulation 
we integrate the positive quantity |�0 (∇ℎ ⋅ �)| over the same enclosed areas to estimate the magnitude of the error 
caused by the divergent flow. The maximum value of f is used as f0 and the largest contour integral of |�0 (∇ℎ ⋅ �)| 
is 1.84 m 3 s −2 which is substantially smaller than the leading contour integrals presented in the next sub-section. 
In addition to this test we used an elliptical solver to calculate the Helmholtz decomposition of the depth-inte-
grated velocity field (e.g., Marshall & Pillar, 2011); using the streamlines from the incompressible component 
does not change the results presented in the next sub-section.

Multiple closed contours can be found for the same value of ψ so an additional contour constraint is needed to 
ensure I(ψ) is single-valued. In this experiment we always choose the contour that spans the largest area which 
minimizes the influence of small pocket circulations that are not a part of the gyre. Closed streamlines that run 

Figure 4.  (a) Bathymetry of the SLOPED configuration. (b) The wind stress profile for both the FLAT and SLOPED 
configuration. The wind stress profile varies seasonally in a sinusoidal manner between summer and winter extremes that are 
highlighted.
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along the edge of the domain can be hard to identify so a discontinuity in I(ψ) near ψ = 0 is expected as the largest 
detected contours will suddenly become pocket circulations as ψ approaches zero.

4.3.  Results

The depth-integrated streamfunction from the FLAT and SLOPED configurations is shown in Figure 5. The 
vorticity of the depth-integrated velocity field is shown in Figure 6. In both configurations a subtropical and 

Figure 5.  The depth-integrated streamfunction (time-averaged) of the (a) FLAT and (b) SLOPED configurations. The 
transports of the subtropical gyre (Tstr) and subpolar gyre (Tspl) are given.

Figure 6.  The vorticity of the depth-integrated velocity field (time-averaged) for the (a) FLAT and (b) SLOPED 
configurations. The black contours are streamlines from Figure 5.
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subpolar gyre can clearly be identified and a small recirculation gyre can be found in the Southernmost corner. 
The subtropical gyre circulation is clockwise and the subpolar gyre circulation is anticlockwise.

In the FLAT configuration the subtropical gyre has a transport of 65 Sv and the subpolar gyre has a transport 
of 18 Sv. In the SLOPED configuration the subtropical gyre has a transport of 38 Sv and the subpolar gyre has 
a transport of 14 Sv. We note that the sloped bathymetry significantly alters the form of the subtropical gyre 
streamlines.

The depth-integrated vorticity diagnostics of the FLAT and SLOPED configuration are shown in Figures 7 and 8 
respectively alongside the decomposition of the planetary vorticity diagnostic introduced in Section 3.4. In the 
FLAT configuration we note that the non-linear advection of vorticity and the planetary vorticity diagnostic have 
the largest grid point values (∼10 −9 ms −2) near the western boundary currents of both gyres. The wind stress curl 
is one order of magnitude smaller (∼10 −10 ms −2) but changes sign less frequently within the gyre regions. We 
see that the planetary vorticity diagnostic is almost entirely a result of the beta effect (Figures 7g and 7h). We 
note that the contribution from varying cell thicknesses in the FLAT configuration is non-zero and localized to 
the edge (Figure 7j) where the EEN Coriolis scheme artificially shrinks F cell thicknesses near masked points.

In the SLOPED configuration (Figure 8) the advection and planetary vorticity diagnostics are still large but have 
an elongated structure similar to the SLOPED streamlines in Figure 5b. The bottom pressure torque is significant 
and is localized to the sloped region (Figure 8b). The planetary vorticity diagnostic has a more complex decom-
position as the influence of varying cell thicknesses extends beyond the edge of the domain and model level steps 
also contribute (Figure 8k).

The integrals of the vorticity diagnostics over areas enclosed by streamlines are shown in Figure 9 and Figure 10 
for the FLAT and SLOPED configurations respectively as well as the integrals of the planetary vorticity diag-
nostic components. Example streamline contours are also shown. In these figures ψ > 0 describes the subtropical 
gyre and ψ < 0 describes the subpolar gyre. The subtropical and subpolar gyres circulate in the opposite direction 
but the sign of the integration results are adjusted so that positive integrals correspond to forces that spin the 
gyres up.

In the FLAT configuration we see that the subtropical and subpolar gyre are entirely driven by wind stress curl. 
For area integrations that envelop most of the subtropical gyre (small and positive values of ψ), the wind stress 
curl is largely balanced by the advection of relative vorticity. This balance implies a net import of positive vortic-
ity into the gyre. The imported vorticity cannot originate from the subpolar gyre as the advection of relative 
vorticity plays no role in spinning the subpolar gyre down. The streamlines at the exterior of the gyre envelop both 
cells (maxima in ψ) of the subtropical gyre so the advection of vorticity between the cells is not a contribution to 
the signal. The imported vorticity must originate from the recirculation gyre in the southernmost corner. In the 
subtropical gyre interior (large positive values of ψ) the wind stress curl is largely balanced by the curl of bottom 
friction, matching the balance proposed by Niiler (1966).

The planetary vorticity diagnostic is significant in both of the FLAT gyres and is the dominant drag for the 
subpolar gyre. For area integrals that include the exterior of either gyre (small values of ψ), the integrated plan-
etary vorticity diagnostic is a combination of a numerical beta effect originating from the discrete calculation of 

𝐴𝐴 − ∇ℎ ⋅ (𝑓𝑓𝐔𝐔) and the influence of partial F cells that are artificially created by the EEN scheme. At the interior of 
both gyres (large values of ψ) the numerical beta effect is the only component.

In the SLOPED configuration we see that both the subtropical and subpolar gyre are almost entirely driven by 
wind stress curl. There is no dominant force spinning the gyres down. Advection, bottom pressure torques, lateral 
diffusion, bottom friction, and planetary vorticity all make a similar contribution to spinning the gyres down. 
The planetary vorticity diagnostic is similarly mixed as both the numerical beta effect and partial cells make up 
the signal. The gyres in the SLOPED configuration appear to be an intermediate case between a topographically 
steered gyre and an advective regime.

Spurious forces that emerge from the discrete Coriolis acceleration are significant in idealized models with and 
without variable bathymetry and appear to have a large influence on gyre circulations. In the next sub-section we 
see if these forces are also significant in a realistic global model.
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Figure 7.  The depth-integrated vorticity diagnostics for the FLAT configuration and the components of the planetary 
vorticity diagnostic (time-averaged). Panels (a) through to (g) are the diagnostics for the terms in the depth-integrated 
vorticity equation (Equation 2). Panels (h) through to (l) are the components of the planetary vorticity diagnostic in 
Equation 23 and discussed in Section 3.4. The color bar is logarithmic (for values greater than 10 −11 in magnitude) and shows 
the four leading order magnitudes that are positive and negative.
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Figure 8.  The depth-integrated vorticity diagnostics for the SLOPED configuration and the components of the planetary 
vorticity diagnostic (time-averaged).
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5.  The Weddell Gyre
5.1.  Details of the Configuration

We now consider a more realistic configuration based on the NEMO global model with realistic forcing and 
bathymetry. In this experiment, we use an ocean-ice global configuration that is similar to that described in 
Storkey et al. (2018) but based on NEMO version 4. The global grid is based on the ‘ORCA’ family of grids 
within the NEMO framework (Madec et  al.,  2019). In this article we only consider the configuration using 
the ORCA025 grid (1/4° horizontal resolution at the equator). Most of the model bathymetry for ORCA025 
is derived from the ETOPO1 data set (Amante & Eakins, 2009). Bathymetry on the Antarctic shelf is based 
on IBSCO (Arndt et al., 2013) and has been smoothed by three applications of a first order Shapiro filter. The 
bathymetry is represented in z-coordinates by partial cells (Barnier et al., 2006). Surface forcing is taken from the 
CORE2 surface forcing data set (Large & Yeager, 2009) and includes contributions from sea ice. The bathymetry 
is shown in Figure 11a.

The model uses a free slip lateral boundary condition with a quadratic drag along the bottom boundaries and the 
TEOS-10 equation of state (McDougall & Barker, 2011). Biharmonic diffusion of momentum is implemented 
and acts along model level surfaces with a diffusivity that varies with local horizontal grid spacing (Willebrand 
et al., 2001). Laplacian diffusion of tracers is implemented and acts along isopycnal surfaces with a diffusivity 
that also varies with local horizontal grid spacing. The EEN vorticity scheme is used again for consistency with 
the analysis in Section 3 and the results in Section 4.

Figure 9.  Stacked area plots showing the integrals of depth-integrated vorticity diagnostics (time-averaged) for the FLAT configuration. Positive values correspond 
to a force that spins the subtropical (ψ > 0) or subpolar (ψ < 0) gyre up. The diagnostics are integrated over areas enclosed by streamlines to develop a full forcing 
profile of the gyres. The x axis describes the value of the streamline used in the integration. Example streamline contours are given. (b) Shows the area integrals of 
the planetary vorticity diagnostic and its components. The maximum contour integral of 𝐴𝐴 |𝑓𝑓0 (∇ℎ ⋅ 𝐔𝐔) | is stated as an approximate error caused by the divergence of the 
depth-integrated flow.
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5.2.  Methods

The methods used for calculating the depth-integrated streamfunction, vorticity diagnostics, and contour inte-
grals are identical to those described in Section 4.2. We study the area including and surrounding the Weddell 
Gyre in the model (see Figure 11) and consider the time-averaged fields over a typical year. The stream func-
tion is interpolated onto a regular 1/12° grid and closed contours are identified for 201 values of ψ. Interpo-
lating beyond 1/12° resolution makes little difference to the results, suggesting that any area errors have been 

Figure 10.  Stacked area plots showing the integrals of depth-integrated vorticity diagnostics (time-averaged) for the SLOPED configuration. Positive values correspond 
to a force that spins the subtropical (ψ > 0) or subpolar (ψ < 0) gyre up. (b) Shows the area integrals of the planetary vorticity diagnostic and its components.

Figure 11.  (a) The bathymetry of the Weddell Gyre region in the global model. (b) Depth-integrated streamfunction of the 
Weddell Gyre (time-averaged).
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significantly suppressed. We test how closely the calculated streamlines 
follow the circulation by integrating the positive quantity |�0 (∇ℎ ⋅ �)| over 
the same enclosed areas to estimate the magnitude of the error caused by the 
divergent flow. The maximum value of ∣f∣ is used as f0 and the largest contour 
integral of |�0 (∇ℎ ⋅ �)| is 19.52 m 3 s −2 which is substantially smaller than 
the leading contour integrals presented in the next sub-section. In addition 
to this test we used an elliptical solver to calculate the Helmholtz decompo-
sition of the depth-integrated velocity field; using the streamlines from the 
incompressible component does not change the results presented in the next 
sub-section.

As we are studying a one gyre system we choose to only identify contours 
where ψ > 0. This effectively filters out the vorticity budget of closed circu-
lations in the Antarctic Circumpolar Current. The sign of the integration 
results are adjusted so that positive integrals correspond to forces that spin 
the Weddell Gyre up.

5.3.  Results

The depth-integrated streamfunction of the Weddell Gyre is shown in Figure 11b and it can be seen that the 
Weddell Gyre has a transport of 60 Sv. The streamlines follow the isobaths closely suggesting the circulation is 
largely constrained by the bathymetry. The vorticity of the depth-integrated velocity field is shown in Figure 12.

The depth-integrated vorticity diagnostics are shown in Figure 13. The fields shown in Figure 13 have been 
smoothed using 25 point nearest neighbor averaging over a local 5 × 5 grid. The contribution from model level 
steps (Figure 13k) has not been smoothed to show that it is localized to  specific lines where the number of model 
levels change. The combined effect of the wind stress and stress due to sea ice are shown in Figure 13e. With real-
istic topography and forcing, the grid point values of depth-integrated vorticity diagnostics are very noisy (even 
when smoothed) with the exception of the surface stress curl. This highlights how important it is to integrate the 
vorticity diagnostics when interpreting them. For individual grid points we see that the planetary vorticity diag-
nostic is made up of contributions from the beta effect, partial cells, and a significant contribution from model 
level steps. The beta effect is the most coherent of the contributions and is mostly negative in the western limb 
of the gyre where V > 0 and positive in the eastern limb where V < 0. As expected, the contribution from model 
levels steps is localized to areas where the number of model levels change.

Unlike in the double gyre model, bottom friction appears to be small and incoherent in the Weddell Gyre region 
and is unlikely to have any significant influence on the vorticity budget. The total time tendency (Figure 13d) is 
non-zero in this vorticity budget suggesting that the model is not in a completely steady state; however, the grid 
point values are only significant in the Drake Passage and are noisy.

The integrals of the depth-integrated vorticity diagnostics over areas enclosed by streamlines are shown in 
Figure 14 alongside integrations of the planetary vorticity components. We see that the Weddell Gyre is almost 
entirely spun up by the wind stress curl. The stress due to sea ice (marked by hatching in Figure 14a) and the 
advection of relative vorticity also help to spin the Weddell Gyre up. The advective contribution is caused by 
vorticity exchange at the interface between the Weddell Gyre and the ACC.

Bottom pressure torques and lateral diffusion play a notable role in spinning the Weddell Gyre down but the 
planetary vorticity diagnostic is the most significant contribution. Looking at the decomposition of the planetary 
vorticity diagnostic we see that the signal is mostly determined by changes in model level and the remainder is 
determined by variations in cell thickness. This suggests that the Weddell Gyre is almost entirely spun down by 
topography due to the combined effect of bottom pressure torques and the planetary vorticity diagnostic, but the 
majority of the gyre's interaction with the sea floor is spurious. This conclusion is true in both the interior and 
exterior of the gyre.

The results in Figure 14 are concerning as they suggest that the vorticity input from the realistic surface stresses 
is largely balanced by spurious topographic accelerations. In an area of the ocean with such strong bathymetric 

Figure 12.  The vorticity of the depth-integrated velocity field (time-averaged) 
in the Weddell Gyre region of the global model. The black contours are 
positive streamlines (ψ > 0) from Figure 11.
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Figure 13.  The depth-integrated vorticity diagnostics for the Weddell Gyre and the components of the planetary vorticity 
diagnostic (time-averaged). All fields except (k) have gone through a 25 point nearest neighbor smoothing process.
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feratures, it is not surprising that topographic forcing is important but we would expect the topographic 
accelerations from a realistic bathymetry to also be realistic. Instead, the dominant component of the topographic 
forcing is a spurious acceleration that is localized to discrete lines where the number of model levels change 
(see Figure 13k) and arises from the masking of the non-topographic Coriolis acceleration. This suggests that 
the partial cell representation of the sea floor is not providing realistic topographic forcing in the Weddell Gyre 
region.

6.  Discussion
We have shown that the vorticity dynamics of both highly idealized and realistic gyre configurations are greatly 
influenced by spurious forces that emerge from the discrete Coriolis force and the step-like representation of 
bathymetry. In the idealized double gyre configuration (Section 4) the spurious force is a combination of numer-
ical beta and topographic effects that are present in both the FLAT and SLOPED configuration. In the realistic 
Weddell Gyre (Section 5) the spurious force is the dominant drag and is entirely determined by model level steps 
and partial cells. In this section we discuss possible methods to mitigate these spurious forces.

6.1.  Alternative Vorticity Schemes

The results presented in Sections 4 and 5 both use the EEN vorticity scheme and it is tempting to dismiss the spuri-
ous forces as an artifact of the selected scheme. The analysis in Section 3.2 is general for three popular schemes: 
EEN, ENE, and ENS. The methods and decomposition used in this article are applicable under any  scheme where 
the Coriolis acceleration can be expressed in the form of Equations 8 and 9. Results from the SLOPED double 
gyre configuration using the different schemes are presented in Appendix C and the vorticity budgets are qualita-
tively similar. Spurious topographic forces and the numerical beta effect are still significant.

Figure 14.  Stacked area plots showing the integrals of depth-integrated vorticity diagnostics for the Weddell Gyre (time-averaged). Positive values correspond to a 
force that spins the gyre up. The hatching marks the sea ice contribution to the surface stress integral. (b) Shows the area integrals of the planetary vorticity diagnostic 
and its components.
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It therefore seems that switching between the available vorticity schemes will not alleviate the spurious signal. It 
is possible that a new scheme could be formulated which is designed to significantly reduce the spurious forces, 
but that will most likely require abandoning the conserved quantities that characterize the existing schemes.

6.2.  Alternative Depth-Integrated Vorticity Equations

In Section 2.1 we derived a depth-integrated vorticity equation by taking the curl of the depth-integrated momen-
tum equation and we calculated the model vorticity diagnostics using the equivalent discrete method. As discussed 
in Section 2.1, there are alternative formulations of the depth-integrated vorticity equations with different phys-
ical meanings. An accurate model should be able to represent all forms of the depth-integrated vorticity budget 
so switching between formulations does not alleviate any spurious forces, but it is interesting to see if any of the 
spurious contributions in this article can spill over into other vorticity budgets.

If we derive a continuous depth-integrated vorticity equation by depth-integrating the curl of the momentum 
equations then the Coriolis acceleration emerges in the vorticity budget as:

∫

�(�,�,�)

−�(�,�)

[

∇ ×
(

−� �̂ × �
)

ℎ

]

⋅ �̂ �� = −∇ℎ ⋅ (��) + � (�� ⋅ ∇)� + � (�� ⋅ ∇) �,� (24)

where ut and ub are the horizontal velocities at the free surface and sea floor respectively. When compared with 
Equation 2 we can see that the planetary vorticity term has an additional topographic and free surface term. The 
second term on the right hand side of Equation 24 describes a vortex stretching acting on the vertical velocity 
induced by the bottom topography. In configurations with no variable bathymetry and small variations in the free 
surface, the order of taking the curl and depth-integrating no longer affects the vorticity budget so the non-topo-
graphic spurious forces identified in this article will remain in either formulation.

To calculate the discrete curl of a horizontal vector field near the bathymetry we need to make an assumption 
about how the along-slope component varies as it approaches the edge of the domain. We can assume either a free 
slip or no slip boundary condition by using a ghost point that mirrors the location of the closest grid point into 
the bathymetry. For a free slip boundary condition the ghost point value matches the closest grid point value, F ∥; 
for a no slip boundary condition the ghost point value will be the negative of the closest grid point value, −F ∥. A 
partial slip boundary condition also exists where the value of the ghost point will be between −F ∥ and F ∥.

Let us return to the simple flow introduced in Section 3.3 and illustrated in Figure 2 but this time when we calcu-
late the planetary vorticity diagnostic we will calculate the curl of the Coriolis acceleration on each model level 
and then depth-integrate. For the lower level, the horizontal flow is entirely in the x direction so there is a zero 
along-slope component of the Coriolis acceleration near the bathymetry (F ∥ = 0). This means that if a free slip, 
no-slip, or partial slip boundary condition are used the ghost point value will be zero and the curl of the Coriolis 
force (centered on the purple cross in Figure 2) will be zero in all three cases. As all vorticity generation takes 
place in the upper level, the planetary vorticity diagnostic is the same if we take the curl before or after depth-in-
tegrating (Equation 21) and the effect of model level steps can exist in either vorticity budget.

The result of Equation 21 can be interpreted as a vortex stretching acting on the vertical velocity that is induced 
by the change in horizontal velocity u1 (see Figure 2). The vertical velocity seems unlikely to originate from topo-
graphic upwelling as there is no flow in the y direction. This fact combined with the ambiguity of ∇H at model 
level steps means we would advise caution before comparing the discrete vortex stretching that originates from 
model level steps to the analytic vortex stretching in Equation 24.

6.3.  The B-Grid

Altering the grid geometry can significantly change the behavior of model forces. To highlight this we consider 
how the Coriolis force behaves on the B-grid. The B-grid excels at representing geostrophic flows as u, and v 
are located on the same vector point. The streamfunction and relative vorticity are located on the tracer point as 
shown in Figure 15.



Journal of Advances in Modeling Earth Systems

STYLES ET AL.

10.1029/2021MS002884

23 of 31

On the B-grid the Coriolis acceleration is simply:

COR
𝑥𝑥
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑓𝑓𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,� (25)

COR
𝑦𝑦

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
= −𝑓𝑓𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.� (26)

The Coriolis acceleration does not rely on multi-point averaging or thickness 
weighting of f so numerical contributions do not emerge in the grid point 
acceleration.

On the B-grid u and v lie on the same point so they share the same mask. 
This means that non-zero Coriolis accelerations are never masked near model 
level steps and the depth-integrated Coriolis acceleration is a function of the 
depth-integrated velocities only:

ĈOR
𝑥𝑥

𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖𝑖𝑖𝑖 ,� (27)

ĈOR
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𝑖𝑖𝑖𝑖𝑖 = −𝑓𝑓𝑖𝑖𝑖𝑖𝑖 𝑈𝑈𝑖𝑖𝑖𝑖𝑖 ,� (28)

We therefore conclude that the spurious force caused by model level steps on the C-grid (see Section 3.3) is not 
present on the B-grid. The corresponding planetary vorticity diagnostic is equal to −∇h ⋅ (fU)∣i,j calculated over 
a single tracer cell.

Calculating the curl on a B-grid is consistent with Stokes' law applied to a tracer cell but the vector information 
is found on the corners of the cell. As the stream function is defined on the tracer point we can approximate that 
the area enclosed by a streamline is a collection of interior tracer cells. Similarly to the C-grid case in Section 3.5 
this is an approximation as we are assuming that the streamline follows the rectangular edges of the interior tracer 
cells so interpolation may be required to remove any significant area error. Unlike the C-grid case, the planetary 
vorticity diagnostic is equal to −∇h ⋅ (f U)∣i,j calculated over a single tracer cell. Therefore, the area integral of 
the planetary vorticity diagnostic will satisfy the divergence theorem applied to the internal tracer cells. It seems 
likely that this discrete integral may vanish on a sufficiently fine grid but further investigation with idealized and 
realistic streamlines is needed.

Using the B-grid would remove all of the spurious topographic forces identified in this article. This highlights 
how a model circulation's interaction with the sea floor is significantly affected by the grid geometry.

6.4.  Terrain-Following Coordinates

The spurious topographic effects found in this article are a consequence of how bottom topography is represented 
in z-coordinates. In the Weddell Gyre especially we see how model level steps can create large spurious contribu-
tions to the depth-integrated vorticity budget.

Terrain-following coordinates (or σ-coordinates) are an alternative form of vertical coordinate where the vertical 
resolution adjusts with the bottom topography so that the same number of model levels are present in all fluid 
columns (Song & Haidvogel, 1994). σ-coordinates are used in Stewart et al. (2021), Schoonover et al. (2016), and 
Jackson et al. (2006) and have the advantage of removing spurious terms that emerge from model level steps. The 
forms of the EEN, ENE, and ENS vorticity schemes are unchanged when using terrain-following coordinates so 
the horizontal variations in cell thicknesses could still cause a spurious signal.

Terrain-following coordinates are not used widely in climate models because of the difficulty in calculating 
accurate horizontal pressure gradients (near the equator), advection, and isoneutral tracer diffusion. A full discus-
sion of the current advantages and limitations of terrain following coordinates can be found in Lemarié, Kurian, 
et al. (2012).

Figure 15.  The horizontal distribution of variables on the B-grid. Tracer 
points (T) and vector points (V) are shown alongside important values that 
are centered on these points. Just like in the C-grid, the vertical velocities are 
found directly above and below the Tracer point.
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6.5.  Isopycnal Coordinates and the Vertical Lagrangian-Remap Method

In isopycnal C-grid models, where density is used as a vertical coordinate, cell thicknesses still vary and in 
models with many density layers the model levels are free to incrop to the sea floor. The forms of the EEN, ENS, 
and ENE schemes are unchanged when using density coordinates so the spurious signals in the planetary vorticity 
diagnostic seem to be possible. In configurations where density layers infrequently incrop to the sea floor, the 
effect of model level steps will be significantly suppressed as the grid is approaching the limit of a terrain-fol-
lowing coordinate system.

In C-grid models that use the vertical Lagrangian-remap method (Adcroft et al., 2019; Bleck, 2002) the vertical 
coordinate evolves with the flow and is then conservatively remapped onto a target grid (see Griffies et al. (2020) 
for a review). The forms of the EEN, ENS, and ENE schemes are unchanged when using this method. If the 
target coordinate grid still has horizontal variations in cell thicknesses and incrops with the sea floor, we would 
expect there to be spurious topographic interactions with the sea floor. It is possible that in areas of topographic 
upwelling the effect of model level steps could be reduced as Coriolis accelerations near the bathymetry are 
elevated by the vertical motion and are partially projected onto unmasked points when remapped onto the target 
grid.

7.  Summary
The depth-integrated vorticity budget is a valuable tool for identifying important model forces in gyre circula-
tions. Vorticity diagnostics can be integrated over the area enclosed by streamlines to identify forces responsible 
for spinning the gyre up and down. By considering how the vorticity budget is represented on a C-grid with 
step-like bathymetry we identified spurious forces that emerge from the representation of bottom topography 
and the discrete Coriolis acceleration. Model level steps and partial cells produce two distinct spurious topo-
graphic forces. In the absence of bottom topography, it is shown that the discrete planetary vorticity term does 
not generally vanish when integrated over the discrete area enclosed by a streamline. This suggests that a spurious 
non-topographic force, described as a numerical beta effect, is also present.

We first studied the vorticity budget of an idealized double gyre configuration with analytic geometry, forcing, 
and two bathymetry options. The FLAT variant has a constant depth and the SLOPED variant has a linear slope 
that extends over half the domain. The subtropical gyre of the FLAT configuration is non-linear at the exterior 
(wind stress curl balanced by advection) and is in a Stommel  (1948) regime in the interior (wind stress curl 
balanced by friction). The FLAT subpolar gyre is spun up by wind stress curl and mostly spun down by spurious 
forces found in the planetary vorticity diagnostic. Spurious forces are significant in both FLAT gyres and are a 
consequence of the numerical beta effect and partial F cells that are artificially introduced by the EEN vorticity 
scheme. Artificial partial F cells would not be present in the ENS or ENE vorticity schemes.

The vorticity budget of the SLOPED gyres features bottom pressure torques and an increased influence of partial 
cells on the planetary vorticity diagnostic. The SLOPED subtropical gyre is an intermediate case between a topo-
graphically steered gyre and a non-linear circulation. The SLOPED subpolar gyre is driven by wind stress curl 
but spun down by the combined effect of bottom pressure torques and spurious interactions with the topography 
via partial cells. This first case study highlighted how spurious terms can dominate a vorticity budget in idealized 
configurations with and without variable bathymetry.

The second case study was the Weddell Gyre in a global model where the forcing and geometry are more realistic. 
By studying the vorticity budget of the Weddell Gyre we conclude that the model circulation is mostly spun up 
by wind stress curl and spun down by the combined effect of bottom pressure torques and spurious interactions 
with the topography. The largest of the topographic forces spinning the Weddell Gyre down is the spurious and 
unrealistic force caused by model level steps.

Switching to alternative vorticity schemes is not effective at reducing spurious contributions to the vorticity 
budget. By presenting a general form of the discrete Coriolis acceleration we are able to quickly conclude that 
the topographic and non-topographic spurious forces will remain under all three vorticity schemes and any other 
scheme that uses this general form. The influence of model level steps is a direct consequence of the C-grid 
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geometry when using vertical coordinates that intersect the bathymetry and is relatively insensitive to the choice 
of vorticity scheme.

Altering the geometry of the discretization is an effective method for reducing spurious topographic forces. The 
B-grid is better at representing the Coriolis force and it is not possible for model level steps or partial cells to 
influence the Coriolis acceleration. Model level steps and their influence on the Coriolis acceleration can be 
avoided altogether by using terrain-following coordinates.

The B-grid and terrain-following coordinates have their own unique limitations and it is unclear how much the 
identified spurious forces corrupt circulation variables such as the gyre transport. It is possible that the spurious 
forces are inadvertently performing the role of one or more real ocean processes that are required for accurate 
simulations. If a combination of non-spurious forces can fully account for the spurious forces found in this article 
then the identified problem is purely diagnostic in nature. Otherwise, any part of the spurious forcing that cannot 
be accounted for by non-spurious forces should be considered as a numerical error. This numerical error could 
be small but may also accumulate under specific conditions and corrupt model circulations. The spurious cooling 
(Hecht, 2010) that occurs when a dispersive advection scheme is used with the Gent and McWilliams (1990) eddy 
parametrization highlights the dangers of ignoring numerical errors.

It is also possible that other model forces contain spurious contributions that have not been uncovered in this 
article. These contributions could be significant and may have the potential to cancel the spurious effects found in 
this article. When looking at the integrated diagnostics in Figures 9, 10 and 14 we see that usually the only model 
force with an opposite contribution to the Coriolis force that is large enough to cancel the found spurious effects 
is the surface stress. It seems unlikely that the surface stress contains spurious contributions that are closely tied 
to bathymetry and the Coriolis parameter.

It is important for the ocean modeling community to continue developing new ways of representing bathymetry 
and we hope that vorticity budgets and the diagnostic method presented in this article will provide a valuable tool 
for assessing and quantifying representations of the sea floor in current and future ocean models.

Appendix A:  Deriving the Depth-Integrated Vorticity Equation
Here we derive the depth-integrated vorticity equation (Equation 2) including the omitted contributions from 
surface undulations and atmospheric pressure torques. We start from the vector invariant form of the momentum 
equation,
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Which has already been introduced in Section 2.1. To derive the depth-integrated vorticity equation, we must first 
depth-integrate the equation and then calculate the vertical component of the curl. In this appendix, we consider 
how each term in Equation A1 is transformed by this operation.

When depth-integrating the time derivative term in Equation A1, we must respect the time dependency of the free 
surface, η. We therefore use the Leibniz integration rule,
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Where the second term on the right hand side of Equation A2 is the contribution from free surface undulations.

The non-linear term in Equation A1 can be rewritten as,
[
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The non-linear term emerges as the advection term in the depth-integrated vorticity equation and we note that,
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Similarly the curl of the depth-integrated Coriolis acceleration is the planetary vorticity term,
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When depth-integrating the pressure gradient in Equation A1, we must respect the x and y dependency of the sea 
floor and the free surface. We therefore use the Leibniz integration rule,
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Where Pa is the atmospheric pressure at the free surface. The second term on the right hand side of Equation A6 
is the atmospheric pressure torque.

The surface forcing term in Equation A1 emerges as the difference between the curl of the top and bottom stresses,
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And the diffusion term emerges as 𝐴𝐴 𝜁𝜁 ,
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By combining all the equations above we can derive the depth-integrated vorticity equation,
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Appendix B:  Explicit Forms of the Coriolis Schemes
Here we explicitly state the forms of the discrete Coriolis acceleration in the ENE, ENS, and EEN vorticity schemes 
for a z-coordinate system. In the ENE vorticity scheme the x and y components of the Coriolis acceleration are:
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in the ENS vorticity scheme the x and y components of the Coriolis acceleration are:
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we note that each term in the ENE and ENS forms can be written in the general form of Equations 8 and 9 as 
𝐴𝐴 𝐴𝐴𝐴𝐴1𝑣𝑣 = 𝑉𝑉 ∕𝑒𝑒3𝑣𝑣 and 𝐴𝐴 𝐴𝐴𝐴𝐴2𝑢𝑢 = 𝑈̃𝑈∕𝑒𝑒3𝑢𝑢 . In the ENE and ENS cases 𝐴𝐴 𝐴𝐴3
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In the EEN vorticity scheme, the x and y components of the Coriolis acceleration are:
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where F NE, F NW, F SE, and F SW are thickness-weighted triads of the Coriolis parameter:
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Where 𝐴𝐴 𝑓𝑓 = 𝑓𝑓∕𝑒𝑒3𝑓𝑓 using the EEN definition of e 3f shown in Equation 13.

To calculate the planetary vorticity diagnostic we take the curl of the depth-integrated Coriolis acceleration using 
Equations 15 and 22. In general the resulting equation of the vorticity diagnostic is very difficult to interpret. We 
only present the form of the planetary vorticity diagnostic for the EEN scheme on a grid with no partial cells or 
model level steps as it is used to derive the numerical beta effect in Section 3.5:

PVO�,� =
1

12 (�1� �2� )�,�

[

−���
�,�+1

(

� �1�
)

�,�+1 − ���
�+1,�+1

(

� �1�
)

�+1,�+1

+� SE
�,�

(

� �1�
)

�,�−1 + ���
�+1,�

(

� �1�
)

�+1,�−1

−� SE
�+1,�+1

(

��2�
)

�+1,�+1 − ���
�+1,�

(

��2�
)

�+1,�

+���
�,�+1

(

��2�
)

�−1,�+1 + ���
�,�

(

��2�
)

�−1,�

− (��,�+1 − ��,�−1)
(

(

� �1�
)

�+1,� +
(

� �1�
)

�,�

)

− (��+1,� − ��−1,�)
(

(

��2�
)

�,�+1 +
(

��2�
)

�,�

)]

.

� (B8)

Appendix C:  Alternative Vorticity Schemes in the Double Gyre Model
In this section we present various integrations of the SLOPED double gyre configuration using different vortic-
ity schemes: EEN, ENS, and ENE. All other aspects of the experiment are as described in Section 4.1. The 
results are shown in Figure C1. The vorticity budget is qualitatively similar between the three cases as well as 
the decompo sition of the planetary vorticity diagnostic. It should be noted that the circulations do differ as the 
transports vary and the separation points of the western boundary currents change.
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Figure C1.  Stacked area plots showing the integrals of depth-integrated vorticity diagnostics for the SLOPED configuration (time-averaged) using the EEN, ENE, and 
ENS vorticity schemes. Positive values correspond to a force that spins the subtropical (ψ > 0) or subpolar (ψ < 0) gyre up. A decomposition of the planetary vorticity 
diagnostic integrals are given on the right (b,d,f).
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Appendix D:  Contour Integration Without Interpolation
The interpolation of vorticity diagnostic fields and the streamfunction is discussed in Section 4.2. Linear inter-
polation is used to minimize the difference between the enclosed area of the true streamline and the total area of 
the interior F cells. In this section we present results that use uninterpolated fields from the FLAT double gyre 
configuration. The results are shown in Figure D1 and are qualitatively similar to the interpolated results shown in 
Figure 9.This example is selected to demonstrate both the qualitative similarity to interpolated results but also the 
reduced coherence that comes from using non-interpolated data. The non-interpolated results from the Weddell 
Gyre are in fact more coherent than the results shown in Figure D1.

Figure D1.  Stacked area plots showing the integrals of depth-integrated vorticity diagnostics (time-averaged) for the FLAT configuration without using interpolated 
fields. Positive values correspond to a force that spins the subtropical (ψ > 0) or subpolar (ψ < 0) gyre up. (b) Shows the area integrals of the planetary vorticity 
diagnostic and its components. The vorticity budget and decomposition are qualitatively similar to that shown in Figure 9.

Data Availability Statement
The software used to calculate, integrate, and plot the vorticity budget is available from https://github.com/afstyles/
VorticityContourAnalysisForNemo/tree/917f337/. The model integrations can be found on Zenodo (Styles 
et al., 2021). The global configuration used in this article uses NEMO version 4.0.4 with the following merged 
branches: branches/UKMO/NEMO_4.0.4_mirror @ 14075, branches/UKMO/NEMO_4.0.4_GO8_package @ 
14474, branches/UKMO/NEMO_4.0.4_GO6_mixing @ 14099, branches/UKMO/NEMO_4.0.4_old_tidal_
mixing @ 14096, branches/UKMO/NEMO_4.0.4_momentum_trends @ 15194. The double gyre configuration 
uses NEMO version 4.0.1 and any modified source code is archived on Zenodo (Styles et al., 2021). The versions 
of NEMO and the mentioned branches can be found at https://forge.ipsl.jussieu.fr/nemo/browser/NEMO/.

https://github.com/afstyles/VorticityContourAnalysisForNemo/tree/917f337/
https://github.com/afstyles/VorticityContourAnalysisForNemo/tree/917f337/
https://forge.ipsl.jussieu.fr/nemo/browser/NEMO/
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