This presentation participates in OSPP

Dynamics of the Earth energy budget with a variable climate feedback parameter

Robin Guillaume-Castel

Benoit Meyssignac, Rémy Roca, Jonathan Chenal

The Earth Energy Budget

$$N = \Delta F + \Delta R$$

Linear radiative response approximation

$$N = \Delta F + \lambda \Delta T_S$$

- We know that λ varies with time
 - λ depends on the type and magnitude of forcing
 - λ depends on the mean surface temperature
 - λ depends on the pattern of temperature warming: pattern effect
- How to include $\lambda(t)$ in an energy balance model?

Introduction

Theory

Validation

In the literature

Usual approach:

$$N = \Delta F + \lambda(t) \Delta T_{S}^{\Delta R}$$

With
$$\lambda(t) = \frac{\Delta R}{\Delta T_S}$$

$$\Delta R \propto \Delta T_S$$

What if $\Delta T_S \sim 0$ but λ varies?

 $\lambda \, (Wm^{-2}K^{-1})$

HadGEM3 -16.9

MRI-ESM2 **-7.4**

CESM2 -6.8

MIROC6 -4.3

IPSL-CM6A -1.6

CanESM5 -1.3

Introduction

Theory

Validation

Theoretical development

• Going back from Budyko (1968) $OLR = A + BT_S$ with $\lambda(t) = \lambda_0 + \Delta\lambda(t)$

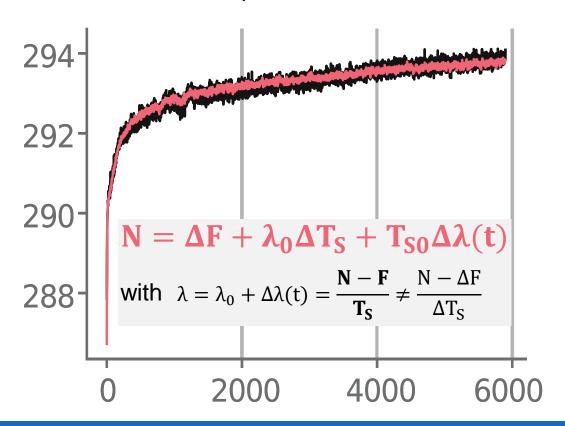
$$N \neq \Delta F + \lambda(t)\Delta T_s$$

The correct energy balance model with $\lambda(t)$ is:

$$N = \Delta F + \lambda_0 \Delta T_S + \Delta \lambda(t) T_{S0}$$

Introduction

Theory


Validation

Validation

Reproducing Ts

CESM104 abrupt4x CO2

- Values of λ (W/m²/K) \checkmark
 - Simulation with $\Delta T_S \sim 0$

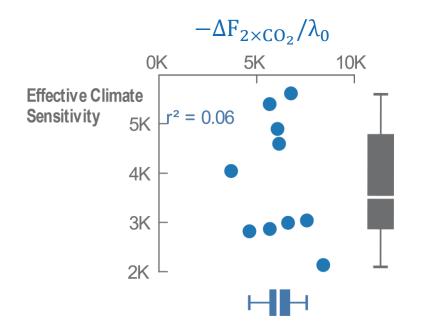
-1.3

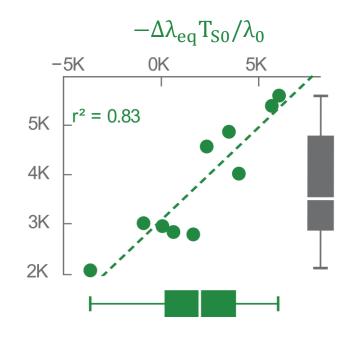
Introduction

Theory

Validation

Consequences


CanESM5


Application to the climate sensitivity

$$N = \Delta F + \lambda_0 \Delta T_S + \Delta \lambda(t) T_{S0}$$

$$ECS = -\frac{\Delta F_{2 \times CO_2}}{\lambda_0} - \Delta \lambda_{eq} \frac{T_{S0}}{\lambda_0}$$

- Base state dependence: T_{S0} , λ_0
- Dependence on $\Delta \lambda_{eq}$: pattern effect

Introduction

Theory

Validation

Take away messages

- The correct EBM with a variable $\lambda(t)$ is $N = \Delta F + \lambda_0 \Delta T_S + T_{S0} \Delta \lambda(t) \neq \Delta F + \lambda(t) \Delta T_S$
- This EBM:
 - 1. Reproduces the T_S dynamics following abrupt-4xCO2 at all time scales
 - 2. Is consistent with experiments where $\Delta T_s = 0$
- We derived a new expression for ECS with an explicit dependence on Δλ:

$$ECS = -\frac{\Delta F}{\lambda_0} - \Delta \lambda_{eq} \frac{T_{S0}}{\lambda_0}$$

• The spread in climate sensitivity is explained by $\Delta \lambda_{eq} \frac{T_{S0}}{\lambda_0}$