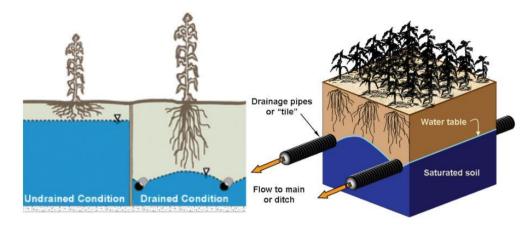
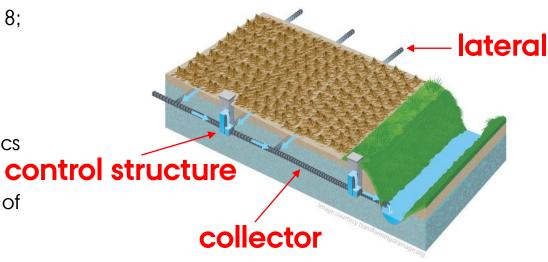

MAPPING OF AGRICULTURAL SUBSURFACE DRAINAGE SYSTEMS USING TIME AND FREQUENCY DOMAIN GROUND PENETRATING RADARS

TRIVEN KOGANTI*, ELLEN VAN DE VIJVER, BARRY J. ALLRED, MOGENS H. GREVE, JØRGEN RINGGAARD, BO V. IVERSEN


BACKGROUND


Agricultural subsurface drainage sytems (aka tile drains):

- Artificial drainage systems installed to transform poorly drained soils into productive cropland and mitigate soil salinization.
- Provides many **agronomic**, **economic** and **environmental** benefits.
- At present, more than 50% of the agricultural areas in Denmark and Midwest USA are artificially drained (Møller et al., 2018; Song et al., 2021).

Why do we map them?

- Important to understand the hydrology and solute dynamics and plan effective edge-of-field mitigation strategies.
- To install new drain lines, it is essential to know the location of the existing drainage system.

(Source: <u>transformingdrainage.org</u>; Blann et al., 2009)

PROBLEM DEFINITION

<u>Traditional methods:</u>

- Tile probing
- Trenching equipment

Limitations:

- Labour intensive and tiresome
- Localized and discrete
- Damage risk

GROUND PENETRATING RADAR (GPR)

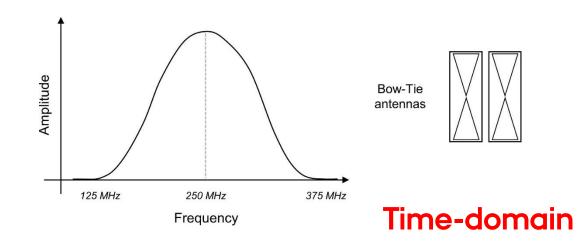
GPR:

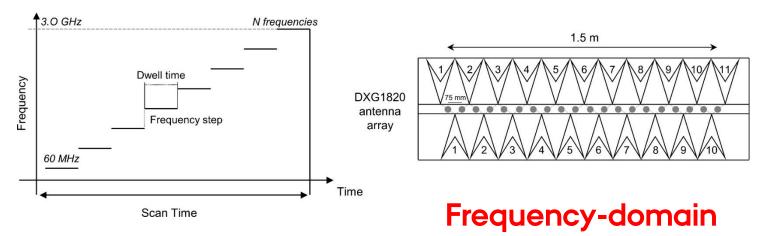
- Works on frequency bandwidth of 10 MHz 3 GHz.
- Waves get reflected at the interface of media with different relative dielectric permittivity (RDP).
- **Electrical conductivity (EC)** controls the degree of attenuation and hence the penetration depth.

$$PD = \frac{40}{\sigma}$$

Time-domain

Frequency-domain


TIME-DOMAIN VS FREQUENCY-DOMAIN GPR


Frequency bandwidth:

- Limited bandwidth (E.g., 250 MHz)
- Wide band coverage (E.g., 60 MHz 3 GHz)

Antenna array:

- Single channel
- 20 Channels 1.5 m

(Modified from: <u>3d-radar.com</u>)

RESULTS – 3D-GPR

Denmark

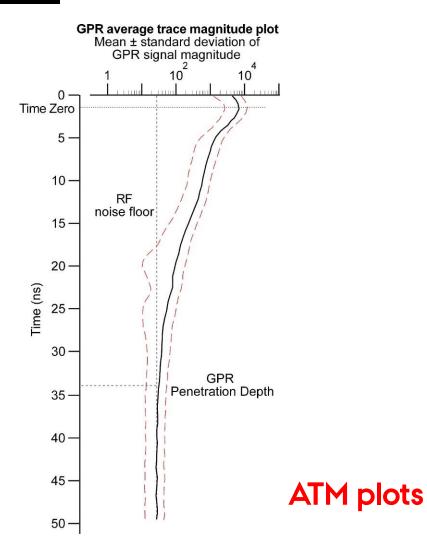
3D-GPR

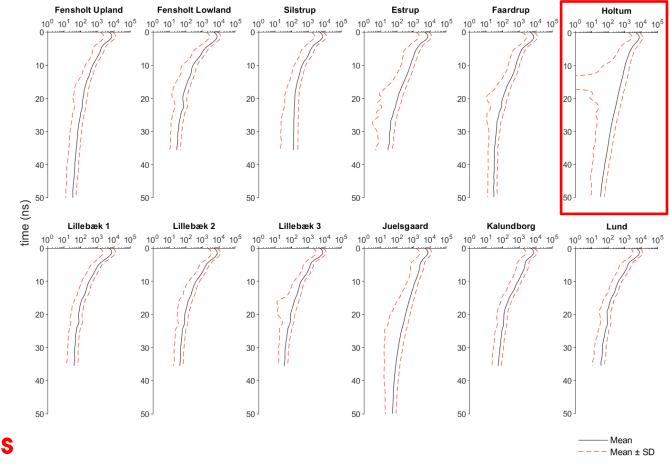
DUALEM

COMPARISON

$EC < 20 \text{ mS m}^{-1}$

Summary of mean ECa 1 m HCP, EC (0 - 1.5 m), success rate, estimated drainage depth, and average 3D-GPR global PD at different sites.

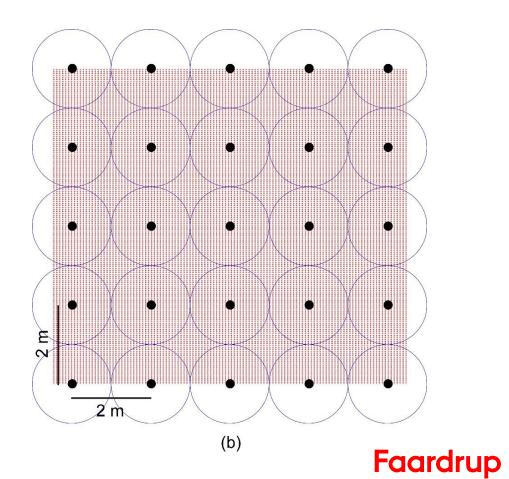

Study site	ECa (0 – 1.6 m)	EC (0 – 1.5 m)	Success rate (%)	Estimated drainage depth		3D-GPR global PD	
				(ns)	(m)	(ns)	(m)
Fensholt upland	17.7	22.3	10	10 – 18	0.4 - 0.8	13 – 24	0.5 – 1.0
Fensholt lowland	22.3	32.2	75	12 - 18 22 - 33	0.5 – 0.8 1.0 – 1.5	22 - 33	1.0 – 1.5
Silstrup	18.2	22.7	0	15 – 22	0.7 – 1.0	22 – 33	1.0 – 1.5
Estrup	28.6	33.0	5	17 – 29	0.7 – 1.2	24 - 36	1.0 – 1.5
Faardrup	14.8	21.3	99	14 – 20	0.6 – 0.9	23 – 35	1.0 – 1.5
Holtum	5.9	9.0	High	10 – 39	0.5 - 2.3	34 – 42	2.0 – 2.5
Lillebæk-1	21.1	26.4	25	9 – 16	0.4 - 0.7	14 – 27	0.6 – 1.2
Lillebæk-2	20.0	24.8	15	10 – 17	0.4 - 0.7	14 – 27	0.6 – 1.2
Lillebæk-3	20.8	24.9	25	9 – 16	0.4 - 0.7	14 – 27	0.6 – 1.2
Juelsgaard	6.7	9.3	90	20 – 29	0.8 – 1.2	48 – 59	2.0 – 2.5
Kalundborg	11.3	13.2	70	10 – 25	0.4 – 1.0	24 – 36	1.0 – 1.5
Lund	16.0	23.0	0	15	0.6	15 – 29	0.6 – 1.2


PETIT IN PROCEINGS. UNIVERSE

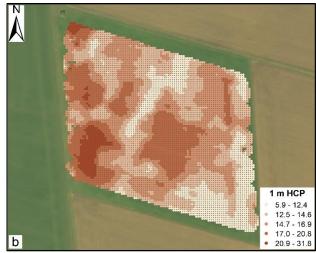
50%

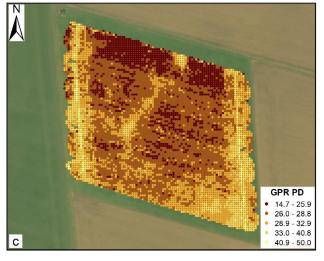
GLOBAL PENETRATION DEPTHS

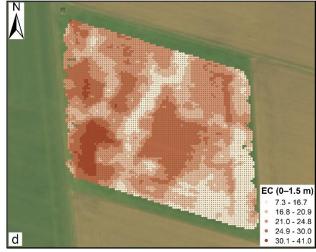
Average Trace Magnitude Plots

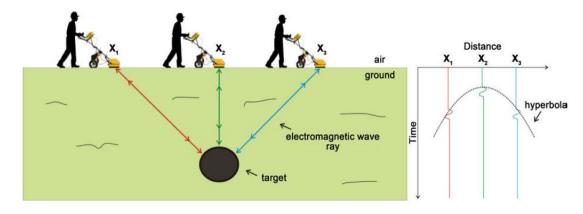


Mean ± standard deviation of GPR signal magnitude



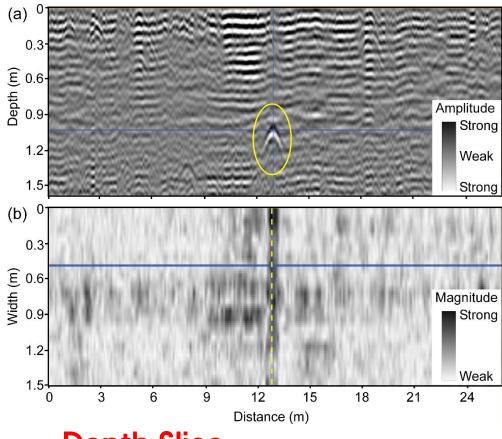

EGU 2022 | TRIVEN KOGANTI 23-27 MAY 2022 | POSTDOCTORAL FELLOW


LOCALIZED PENETRATION DEPTHS



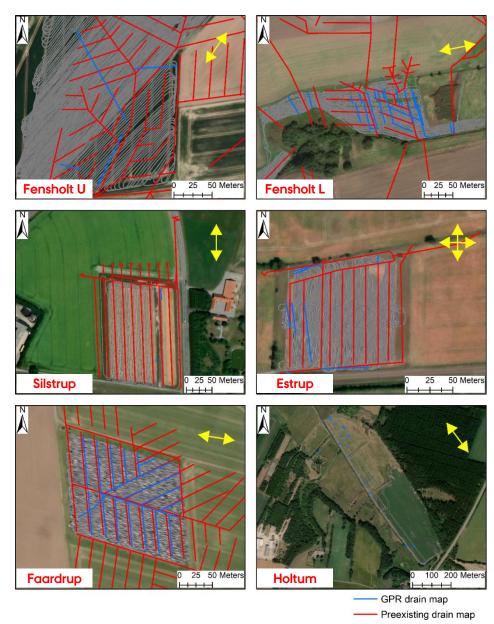
EGU 2022 23-27 MAY 2022 TRIVEN KOGANTI
POSTDOCTORAL FELLOW

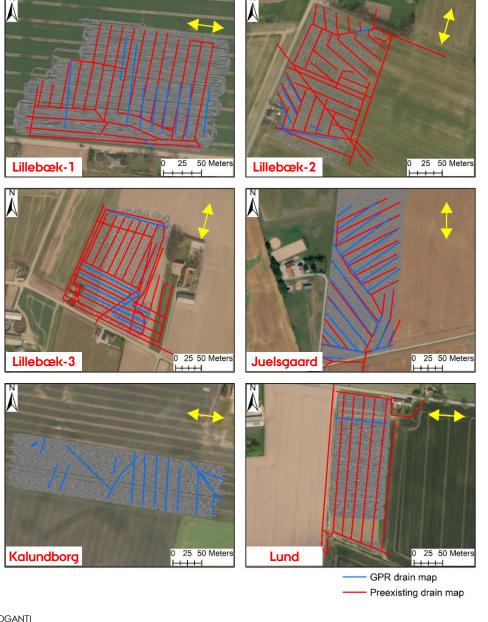
TYPICAL DRAINAGE PIPE SIGNATURE


Perpendicular to drain line orientation:

- Hyperbolic pattern in the vertical profile
- Linear pattern in the depth slice

(Source: Poluha et al., 2017)


Vertical Profile



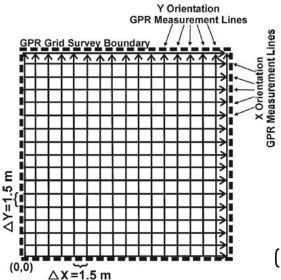
Depth Slice

11

RESULTS - COMPLEMENTARY USE

Midwest USA

UAV Imagery


GPR


COMPLEMENTARY USE

Optimal survey configuration?

- UAV imagery 100 ha in 30 to 45 minutes
- GPR 100 m² in the same time
- Use both?

(Source: Allred et al., 2005)

Site-3

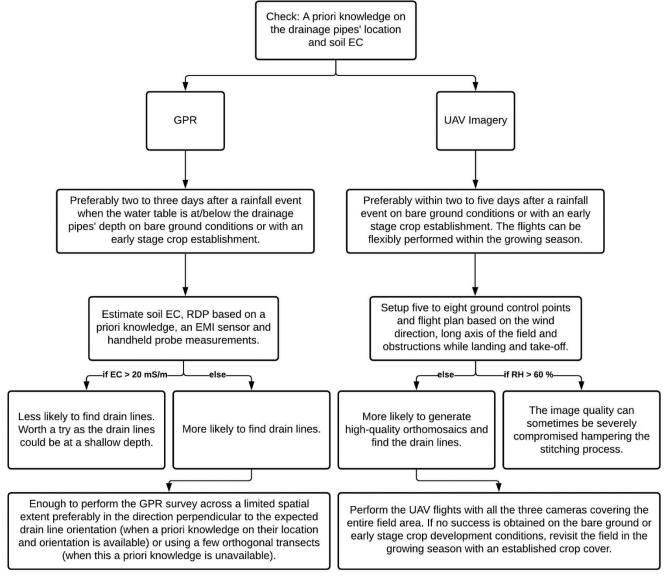
COMPLEMENTARY USE

Summary:

- 1. At **Site-1**, both the UAV imagery and GPR were equally successful.
- 2. At **Site-2**, while the UAV imagery was successful in one section of the field GPR proved to be useful in the other section.
- 3. At **Site-3**, less to no success was observed in finding the drain lines using UAV imagery captured on bare ground conditions, whereas good success was achieved using GPR.
- 4. At **Site-4**, the UAV imagery was successful and GPR failed to capture the drainage pipes' location.
- Thus, GPR was useful as both a mapping and validation technique and provided information on the drainage pipes' depth.

Site-4

EGU 2022 23-27 MAY 2022


Site-3

TRIVEN KOGANTI
POSTDOCTORAL FELLOW

GUIDELINES

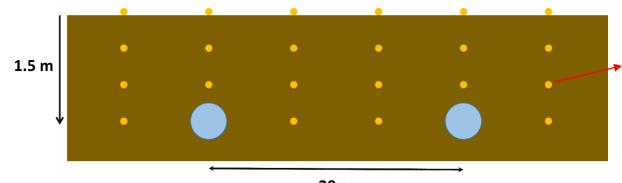
Optimal timing for site conditions in Denmark:

- When the water table is at/below the drain lines depth:
 - ✓ In spring (March April)
 - ✓ In summer after the harvest until late autumn (August October)
- Surveys during late autumn to winter (November February) should preferably be avoided.

KEY FINDINGS AND FUTURE WORK

Key findings:

• Drainage pipe **diameter** and **depth of installation** are important considerations.


t Europe: **50 mm** in diameter

❖ USA: 100 mm in diameter

To develop a more robust framework:

- Forward modelling of proximal sensors
- Controlled experiment using remote sensing
- Field experiments with all the sensors

Soil EC, RDP and temperature probes

20 m EGU 2022 23-27 MAY 2022

TRIVEN KOGANTI POSTDOCTORAL FELLOW

ACKNOWLEDGEMENTS

- TRENDS and FUTURE CROPPING projects Innovationsfonden, Denmark
- Dr. Ellen Van De Vijver Ghent University, Belgium
- Dr. Barry J. Allred USDA/ARS, Columbus, Ohio, U.S.A
- Dr. Bo V. Iversen, Dr. Mogens H. Greve Aarhus University, Denmark
- All the technicians and support staff of 3D-Radar AS, Sensors & Software Inc., Aarhus GeoSoftware, and Pix4D SA companies
- Thanks to farmers, landowners and site managers

SUPPORTING PAPERS

Journal articles:

- I. Koganti, T., Van De Vijver, E., Allred, B. J., Greve, M. H., Ringgaard, J., & Iversen, B. V. 2020. Mapping of agricultural subsurface drainage systems using a frequency-domain ground penetrating radar and evaluating its performance using a single-frequency multi-receiver electromagnetic induction instrument †. Sensors, 20(14), 3922. https://doi.org/10.3390/s20143922
- II. Koganti, T., Ghane, E., Martinez, L., Iversen, B. V., & Allred, B. J. 2020. Mapping of agricultural subsurface drainage systems using unmanned aerial vehicle imagery and ground penetrating radar †. Sensors, 21(8), 2800. https://doi.org/10.3390/s21082800

Dissertation:

I. Koganti, T. 2021. Mapping of agricultural subsurface drainage systems using proximal and remote sensors. PhD Dissertation. Department of Agroecology, Graduate School of Technical Sciences, Aarhus University, Denmark. 238 pp. http://dx.doi.org/10.13140/RG.2.2.12064.92165

