Global mean surface temperature projection constrained by historical observations

EGU General Assembly 2022

Jingying Zhou Lykke, Eric Hillebrand, and Mikkel Bennedsen

Department of Economics and Business Economics and CREATES, Aarhus University

May 27, 2022

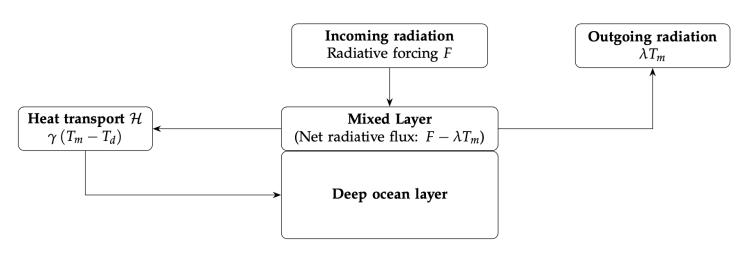
References

Alternatives to Cummins et al. (2020)

- We map the two-component energy balance model (EBM) into a linear state space model (EBM-SS model) and obtain the maximum likelihood estimates of the physical parameters.
- The EBM-SS model provides alternative and extension to the linear state space framework by Cummins et al. (2020):

	EBM-SS model	Cummins et al. (2020)
Nature of datasets	observation-based	$4 \times CO_2$ experiments (CMIP5)
Measurement choice	Empirical counterparts	top-of-atmosphere (TOA) net flux
Radiative forcing	exogenous/local linear trend	red noise process
Multiple data sources	Yes	No

Two-component energy balance model



Notation	Description
\overline{R}	radiation
${\cal H}$	heat exchange
T	temperature
C	heat capacity
m	subscript for the mixed layer
d	subscript for the deep ocean layer
F	radiative forcing
λ	climate feedback parameter
γ	coefficient of heat exchange

Two-component EBM

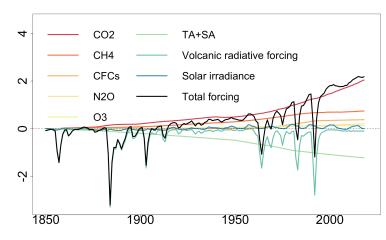
$$C_{m} \frac{dT_{m}}{dt} = F - \lambda T_{m} - \gamma \left(T_{m} - T_{d_{1}} \right)$$

$$C_{d} \frac{dT_{d}}{dt} = \gamma \left(T_{m} - T_{d} \right)$$
(1)

Decomposition of radiative forcing F_t

Figure: Forcing F_t (1850 – 2018, Wm⁻²)

Model Specification



• F_t is decomposed into the natural forcing (N_t) and the anthropogenic forcing (A_t) :

$$F_t = N_t + A_t,$$

$$N_t = Y_{N,t}$$

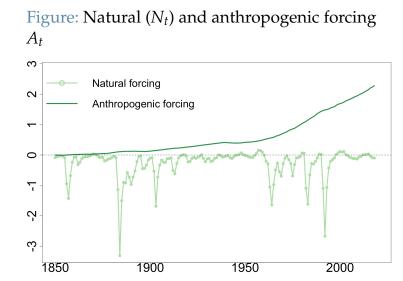
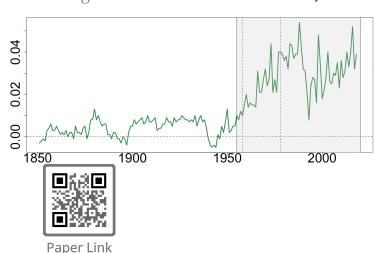


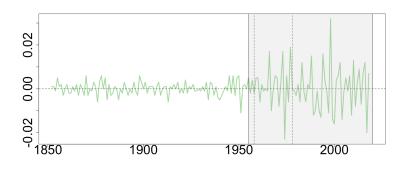
Figure: First-order difference: ΔA_t



 A_t – a local linear trend model:

$$A_t = \beta_t + A_{t-1} + \eta_{A,t}$$
 $\beta_t = \beta_{t-1} + \eta_{\beta,t}$
 $\eta_{A,t} \sim \mathcal{N}(0, \sigma_{\eta_A}^2),$
 $\xi_t \sim \mathcal{N}(0, \sigma_{\eta_\beta}^2).$

Figure: Second-order difference: $\Delta (\Delta A_t)$



EBM-State Space (EBM-SS) model

State equation: state vector $(T_{m,t} T_{d,t} N_t A_t \beta_t)^{\top}$

 $Y_{Ft} = N_t + A_t + \varepsilon_{Ft}$

Forcing Decomposition

$$\begin{split} T_{m,t} &= \left(1 - \frac{\lambda + \gamma}{C_m}\right) T_{m,t-1} + \frac{\gamma}{C_m} T_{d,t-1} + \frac{1}{C_m} \left(N_{t-1} + A_{t-1}\right) + \eta_{T_m,t}, \\ T_{d,t} &= \frac{\gamma}{C_d} T_{m,t-1} + \left(1 - \frac{\gamma}{C_d}\right) T_{d,t-1} + \eta_{T_d,t}, \\ N_t &= Y_{N,t} \\ A_t &= \beta_t + A_{t-1} + \eta_{A,t}, \\ \beta_t &= \beta_{t-1} + \eta_{\beta,t} \end{split}$$

Measurement equation with multiple data sources for T_m and T_d :

$$Y_{T_{m,t}}^{1} = T_{m,t} + \varepsilon_{T_{m,t}}^{1},$$

$$\vdots$$

$$Y_{T_{m,t}}^{K} = T_{m,t} + \varepsilon_{T_{m,t}}^{K},$$

$$Y_{T_{d,t}}^{1} = T_{m,t} + \varepsilon_{T_{d,t}}^{1}, \quad Y_{O,t}^{1} = C_{d}T_{d,t} + \varepsilon_{O,t}^{1}, \quad \text{Corr}\left(\varepsilon_{T_{d,t}}^{1}, \varepsilon_{O,t}^{1}\right) = \rho_{1}$$

$$\vdots \qquad \vdots$$

$$Y_{T_{d,t}}^{J} = T_{m,t} + \varepsilon_{T_{d,t}}^{J}, \quad Y_{O,t}^{J} = C_{d}T_{m,t} + \varepsilon_{O,t}^{J}, \quad \text{Corr}\left(\varepsilon_{T_{d,t}}^{J}, \varepsilon_{O,t}^{J}\right) = \rho_{J}$$

Data – summary

Table: Summary of data series from different research groups. The last column "baseline" indicates the reference period or the year upon which the anomalies are constructed.

Variable	Acronym/Type	Institution/Authors	Coverage	Baseline
	GISTEMP	NASA	1880 – 2020	1951 – 1980
	NOAAGlobalTemp	NOAA	1880 – 2019	1901 – 2000
Global mean	HadCRUT5	Met Office Hadley Center	1850 – 2020	1961 – 1990
surface	BEST	Berkeley Earth	1850 – 2020	1951 – 1980
temperature (GMST)	CW14	Cowtan and Way(2014)	1850 – 2020	1961 – 1990
Anomalies	JMA	Japanese Meteorological Agency	1891 – 2020	1981 – 2010
	ERA-Interim	Copernicus	1970 – 2020	pre-industrial
	JRA-55	Japanese Meteorological Agency	1970 – 2019	pre-industrial
Global ocean	NOAA 0-700m	NOAA	1955 – 2020	not reported
temperature	IAP 0-700m, 0-2000m	Institute of Atmospheric Physics	1940 – 2020	1981 – 2010
Global	NOAA 0-700m	NOAA	1955 – 2020	not reported
OHC Anomalies	IAP 0-700m, 0-2000m	Institute of Atmospheric Physics	1940 – 2020	1981 – 2010
Forcing	Effective Forcing	Hansen et al. (2011)	1850 – 2018	1850

Synchronizing anomalies relative to pre-industrial era

GMST anomalies:

- pre-industrial era: 1850 1900 (IPCC, 2018);
- We normalize all of the GMST series with respect to the pre-industrial period (1850 1900) using the method in IPCC (2018).

OHC anomalies: sparse information before 1955.

We include constants in the measurement equations of ocean temperature and OHC to offset the baseline difference between 1981 – 2020 and the pre-industrial era (j = 1, ..., J):

$$Y_{T_{d},t}^{j} = \mu_{T_{d}}^{j} + T_{d,t} + \varepsilon_{T_{d},t}^{j}$$

$$Y_{O,t}^{j} = C_{d}\mu_{T_{d}}^{j} + C_{d}T_{d,t} + \varepsilon_{O,t}^{j}.$$
(3)

Introduction Model Specification Forcing Decomposition Data and Results Projection Conclusion References

Estimation of EBM-SS model

- The parameters to be estimated in EBM-SS model include:
 - physical parameters: λ , γ , C_m , C_d
 - variances of state disturbances and measurement errors + ρ
 - constants for the measurement of T_d , μ_{T_d}
- Maximum likelihood using outputs of the Kalman filter (Durbin and Koopman, 2012);
- Two settings (generated in the same simulation):
 - EBM-SS base model: one data source for each latent state
 - EBM-SS full model: eight GMST series, two pairs of ocean temperature and OHC 0-700m series (one pair of 0-2,000m series), and one radiative forcing series

Monte Carlo simulation – results

- Equilibrium climate sensitivity (ECS): the GMST increase that follows a doubling of atmospheric CO₂;
- ECS = $\frac{F_{2\times CO_2}}{\lambda}$, where $F_{2\times CO_2} \approx 3.93~(\pm 0.47,~5\% 95\%~CI)~W~m^{-2}$ (Forster et al., 2021);
- Including multiple data sources helps decrease the estimation uncertainty.

	EBM-SS base model					EBM-SS full model				
	λ	λ γ C_m C_d ECS				λ γ C_m C_a			C_d	ECS
data-generating value	1.0828	1.3027	9.6376	98.4886	3.6294	1.0828	1.3027	9.6376	98.4886	3.6294
sample mean bias	0.0131	0.0343	0.1785	-0.0276	0.1943	0.0280	-0.0133	-0.179	-0.0032	0.1216
standard deviation	0.2700	0.2616	2.3388	0.8449	1.0408	0.2650	0.2485	2.1049	0.2048	0.9557
RMSE	0.2702	0.2637	2.3444	0.8450	1.0583	0.2663	0.2487	2.1114	0.2047	0.9629

ntroduction Model Specification Forcing Decomposition Data and Results Projection Conclusion References

Empirical estimates

Table: Comparison of estimates for the physical parameters between EBM-SS full model and other frameworks. The standard errors of the estimates are reported in the parentheses.

A. evaluation of the two-component EBM using historical data									
model	$\hat{\lambda}$	$\hat{oldsymbol{\gamma}}$	$\widehat{\pmb{C}}_m$	$\widehat{m{C}}_d$	EĈS				
EBM-SS full, 0-700m ocean data (NOAA & IAP)	1.08 (0.2	5) 1.30 (0.34)	9.64 (2.86)	98.49 (0.26)	3.63 (0.89)				
EBM-SS full, 0-2,000m ocean data (IAP)	0.66 (0.3	1) 1.82 (0.45)	9.35 (2.61)	269.30 (0.42	.) 5.91 (2.77)				
B. evaluation of the two-component EBM using $4 \times \text{CO}_2$ experiment data									
model	$\hat{\lambda}$	$\widehat{oldsymbol{\gamma}}$	$\widehat{\pmb{C}}_m$	$\widehat{m{C}}_d$	EĈS				
CMIP6 means (Smith et al., 2021)	0.84 (0.3	8) 0.64 (0.13)	8.1 (1.0)	110 (63)	3.0				
CMIP5 means (Cummins et al., 2020)	1.21	0.77	6.88	97.18	3.41				
C. estimates of ECS using differ	ent data	asets and r	nethods						
model and data	$\hat{\lambda}$	$\widehat{oldsymbol{\gamma}}$	$\widehat{\pmb{C}}_m$	$\widehat{m{C}}_d$	EĈS				
Instrumental records (Forster et al., 2021)	-	-	-	-	2.5 - 3.5				
CMIP6 means (Schlund et al., 2020; Smith et al., 2021)	-	-	-	-	3.78 (1.08)				
MIP5 means (Schlund et al., 2020; Smith et al., 2021)	_	-	-	-	3.28 (0.74)				
GIT					الحراثاة				

Empirical evidence for estimation uncertainty reduction by using multiple data sources

- EBM-SS base model: 16 combinations (0-700m) and 8 combinations (0-2,000m).
- A measure for relative estimation uncertainty coefficient of variation (CV):

standard error of the parameter estimate of the mean of the parameter.

Table: "% $CV \ge (*)$ " reports the percentage where the individual CV of EBM-SS base model is not smaller than the CV of the EBM-SS-full model (denoted as *).

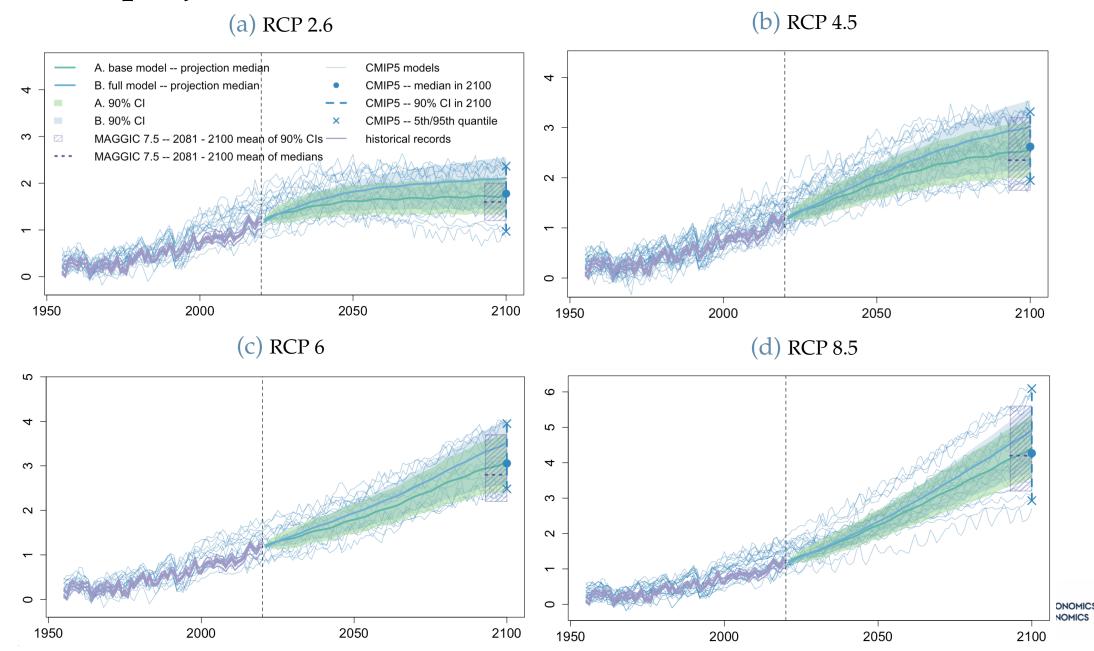
Model		NOAA / IAP 0-700m						IAP 0-2,000m				
		Â	Ŷ	\hat{C}_m	\hat{C}_d	ECS	Â	Ŷ	\hat{C}_m	\hat{C}_d	ECS	
EBM-SS-full	CV (*)	0.23	0.26	0.30	0.003	0.25	0.46	0.25	0.28	0.002	0.47	
EBM-SS-base	median of CVs	0.39	0.22	0.37	0.01	0.40	1.20	0.19	0.36	0.002	1.21	
	% CV ≥ *	93.8%	62.5%	93.8%	50%	93.8%	100%	0	87.5%	100%	100%	

RCP scenarios and GMST projection

Forcing Decomposition

- Representative Concentration Pathways (RCPs) represent different possible GHG concentration trajectories until 2100.
- RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5 denote different radiative forcing levels (Wm^{-2}) 2.6, 4.5, 6, and 8.5, respectively, in 2100.
- Assume the physical parameter vector follows a multivariate normal distribution $\mathcal{N}\left(\hat{\theta}, \hat{\Sigma}\right)$, where $\hat{\theta}$ and $\hat{\Sigma}$ are estimated empirically.
- Draw 10,000 sets of physical parameters from $\mathcal{N}\left(\hat{\theta}, \hat{\Sigma}\right)$, while fixing other parameters at their empirical estimates.
- EBM-SS model produces point predictions of GMST at T + h (T = 2020, and h= 1, 2, ..., 80) under the four RCP scenarios.

GMST projections – 0-700m ocean data



Introduction Model Specification Forcing Decomposition Data and Results Projection Conclusion References

Concluding Remarks

We have established a statistical climate model (EBM-SS model), which is a linear state space representation of the two-component EBM.

The EBM-SS model:

- allows to incorporate multiple data sources for the latent states, which reduce estimation uncertainty of the parameters;
- produces projections for GMSTs that are comparable to those of CMIP5 and MAGGIC 7.5 for the RCP scenarios.

Our statistical model exclusively use historical observational data, and our results corroborate earlier findings both from complex climate models and from reduced complexity models.

References I

- Cummins, Donald P, David B Stephenson, and Peter A Stott (2020). "Optimal estimation of stochastic energy balance model parameters". In: *Journal of Climate* 33.18, pp. 7909–7926.
- Durbin, James and Siem Jan Koopman (2012). *Time series analysis by state space methods*. Revised. Oxford university press.
- Forster, P. et al. (2021). 2021: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)] Cambridge: Cambridge University Press. In Press.
- Geoffroy, Olivier, David Saint-Martin, Dirk JL Olivié, Aurore Voldoire, Gilles Bellon, and Sophie Tytéca (2013). "Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments". In: *Journal of Climate* 26.6, pp. 1841–1857.

References II

- Gregory, Jonathan M (2000). "Vertical heat transports in the ocean and their effect on time-dependent climate change". In: *Climate Dynamics* 16.7, pp. 501–515.
- IPCC (2018). "Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty". In: In press.
- North, Gerald R, Robert F Cahalan, and James A Coakley Jr (1981). "Energy balance climate models". In: *Reviews of Geophysics* 19.1, pp. 91–121.
- Schlund, Manuel, Axel Lauer, Pierre Gentine, Steven C Sherwood, and Veronika Eyring (2020). "Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?" In: *Earth System Dynamics* 11.4, pp. 1233–1258.

References III

Smith, C., Z.R.J. Nicholls, K. Armour, W. Collins, P. Forster, M. Meinshausen, M.D. Palmer, and M. Watanabe (2021). The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)] Cambridge: Cambridge University Press. In Press.