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Abstract 
Gathering accurate precipitation data is an important task for setting up hydrological models. In 

Norway, the gauge network density is higher in the southern parts and decreases in the north. The 

amount of precipitation gauges in higher elevations is rather scarce. Radar data is available, but 

lacks accurate reflectivity-precipitation relation and errors in precipitation estimation are caused 

for example by beam blockage.  

For modelling purposes, this study aims to evaluate the impact of precipitation data and whether 

the application of radar derived data gives any benefit, especially when modelling in hourly 

timesteps. The results of this study can give decision support for modellers having difficulties 

choosing between precipitation products. For that purpose, spatial interpolated precipitation 

datasets were evaluated and compared in terms of performance for hydrological modelling. The 

Meteorological Institute Norway publishes gridded hourly datasets covering the Norwegian 

mainland: They include seNorge2, interpolated gauge data using an optimal interpolation, and the 

MEPS-Nordic (NWP), a combination of gauge data, radar data and a numerical weather model. Five 

different catchments were simulated in the numerical precipitation-runoff model HYPE with both 

datasets for comparison. The catchments vary in area, hydrological regime and availability of 

nearby gauges; they are mostly unregulated. The simulation was done in an hourly time step in 

order to compare precipitation variability in detail. 

In this study, a calibration method was developed that generates comparable and reproduceable 

performances in terms of the Kling–Gupta efficiency (KGE) for each catchment and dataset. A 

Progressive Monte Carlo Method within a stepwise calibration was applied. The resulting discharge 

time series and water balances of the catchments were analysed and compared. Additionally, 

selected precipitation events, where the precipitation products were not able to describe 

atmospheric processes appropriately, were analysed in-depth. The datasets were further compared 

by spatially accumulating annual precipitation sums over the catchments, by using a weather 

station owned by a hydro power company to evaluate the agreement of the data and by comparing 

the runoff and precipitation volume of the basins.  

It turned out that applying raw radar data is not reasonable because of beam shielding and 

attenuation effects, especially in the inland of Norway, as well as a high underestimation of the 

precipitation amount. SeNorge2 showed reasonable results in the calibration, but decreased 

strongly in validation. NWP appeared to create more stable model performances and had a better 

agreement in terms of water balance and detection of small-scale precipitation events. 

Nevertheless, the model performance is lower in most of the catchments.  

During a sensitivity analysis, different model uncertainties were found and discussed. They included 

unsensitive parameters, that did not converge during the calibration. Additionally, switching the 

calibration and validation time period demonstrated instabilities of the model results depending on 

the chosen time period in some catchments. Individual parameters were evaluated as well. Some 

of them showed physical reasonable values, but for example the river velocity appeared to be 

unnaturally high in some instances. 

NWP turned out to be more likely to measure small scale precipitation events and resulted in more 

stable performances and was therefore more suitable for an hourly hydrological model. However, 

the amount radar stations in Norway should be increased, to decrease attenuation and beam 

blockage effects. 
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Kurzfassung 
Zu Modellierungszwecken zielt diese Studie darauf ab, die Auswirkungen von Niederschlagsdaten 

zu bewerten und festzustellen, ob die Anwendung von Radardaten einen Nutzen bringt, 

insbesondere bei der Modellierung in stündlichen Zeitschritten. Die Ergebnisse dieser Studie 

können Modellierern, die Schwierigkeiten bei der Auswahl zwischen Niederschlagsprodukten 

haben, eine Entscheidungshilfe geben. Zu diesem Zweck wurden räumlich interpolierte 

Niederschlagsdatensätze aus Norwegen ausgewertet und hinsichtlich ihrer Leistungsfähigkeit für 

die hydrologische Modellierung verglichen.  

In Norwegen ist das Niederschlagsmessnetz im Süden dichter und nimmt im Norden ab. Die Anzahl 

an Niederschlagsmessern im Hochgebirge ist spärlich. Radardaten sind verfügbar, aber es mangelt 

an einer genauen Reflektivitäts-Niederschlagsbeziehung und Fehler bei der Niederschlagsmessung 

werden beispielsweise durch Strahlblockierung verursacht. Das Meteorologische Institut Norwegen 

veröffentlicht Norwegen umfassende Niederschlagsprodukte. Dazu gehört seNorge2, eine 

Interpolation von Stationsdaten, und MEPS-Nordic (NWP), eine Kombination aus Stationsdaten, 

Radardaten und einem numerischen Wettermodell. Im numerischen Niederschlagsabflussmodell 

HYPE wurden fünf verschiedene Einzugsgebiete mit diesen Datensätzen simuliert und die 

Ergebnisse verglichen. Die Einzugsgebiete unterscheiden sich in Fläche, hydrologischem Regime 

und Verfügbarkeit nahegelegener Messstationen und sind meist ungeregelt. Die Simulation wurde 

in einem stündlichen Zeitschritt durchgeführt, um die Niederschlagsvariabilität im Detail 

vergleichen zu können. 

In dieser Studie wurde eine Kalibrierungsmethode entwickelt, die eine vergleichbare und 

reproduzierbare Modellperformance in Bezug auf die Kling-Gupta-Effizienz (KGE) für jedes 

Einzugsgebiet und jeden Datensatz generiert. Es wurde eine progressive Monte-Carlo-Methode 

innerhalb einer schrittweisen Kalibrierung angewendet. Die resultierenden Abflusszeitreihen und 

Wasserbilanzen der Einzugsgebiete wurden analysiert und verglichen. Zusätzlich wurden 

ausgewählte Niederschlagsereignisse, bei denen die Niederschlagsprodukte atmosphärische 

Prozesse nicht angemessen beschreiben konnten, vertieft analysiert. Die Datensätze wurden 

darüber hinaus verglichen, indem die jährlichen Niederschlagssummen räumlich über den 

Einzugsgebieten akkumuliert, eine Wetterstation mit den Produkten verglichen und die 

Wasserbilanz der Einzugsgebiete aufgestellt wurden. 

Es stellte sich heraus, dass die Verwendung von Radardaten aufgrund von Strahlblockierung- und 

Dämpfungseffekten insbesondere im inneren Norwegens sowie einer starken Unterschätzung der 

Niederschlagsmenge nicht sinnvoll ist. Ein Modell mit seNorge2 zeigte bei der Kalibrierung passable 

Ergebnisse, ließ aber bei der Validierung stark nach. NWP schien stabilere Modellperformances zu 

erzeugen und hatte eine bessere Übereinstimmung in Bezug auf die Wasserbilanz und die 

Erkennung von kleinräumigen Niederschlagsereignissen. Dennoch ist die Modellperformance in 

den meisten Einzugsgebieten geringer als bei seNorge2. 

Bei einer Sensitivitätsanalyse wurden verschiedene Modellunsicherheiten gefunden und diskutiert. 

Darunter Parameter, die während der Kalibrierung nicht konvergierten und nicht sensitiv sind. 

Darüber hinaus zeigte das Wechseln des Kalibrierungs- und Validierungszeitraums Instabilitäten der 

Modellergebnisse in Abhängigkeit vom gewählten Zeitraum in einigen Einzugsgebieten. Auch 

einzelne Parameter wurden ausgewertet. Einige von ihnen zeigten physikalisch vernünftige Werte, 

andere Parameter, wie die Flussgeschwindigkeit, waren hingegen unnatürlich hoch. 

Es stellte sich heraus, dass NWP für stündliche Modelle besser geeignet ist, da mehr 

Niederschlagsereignisse tatsächlich gemessen wurden und die Ergebnisse stabiler sind. Allerdings 

sollte die Anzahl an Radarstationen in Norwegen erhöht werden, um Dämpfungseffekte und 

Strahlblockungen zu verringern. 



Abstrakt 

 

vii 

Abstrakt 
Å samle nedbørsdata er en viktig oppgave for å sette opp hydrologiske modeller. Nøyaktig 

informasjon reduserer modelleringsusikkerhet. I Norge er nedbørmålingsnettverket tettere i sør og 

avtar i nord. Antall regnmålere i høyfjellet er sparsomt. Radardata er tilgjengelig, men mangler 

nøyaktig reflektivitet-nedbør-relasjon og feil i nedbørestimering skyldes for eksempel 

stråleblokkering. 

For modelleringsformål har denne studien som mål å evaluere virkningen av nedbørsdata og om 

bruken av radaravledede data gir noen fordel, spesielt ved modellering i timestrinn. Resultatene av 

denne studien kan gi beslutningsstøtte for modellerere som har vanskeligheter med å velge mellom 

nedbørsprodukter. For det formålet ble romlig interpolerte nedbørsdatasett evaluert og 

sammenlignet med tanke på ytelse for hydrologisk modellering. Meteorologisk institutt Norge 

publiserer rutenettede timedatasett som dekker det norske fastlandet: De inkluderer seNorge2, 

interpolerte værstasjonsdata, og MEPS-Nordic (NWP), en kombinasjon av værstasjonsdata, 

radardata og en numerisk værmodell. Fem forskjellige nedslagsfelt ble simulert i den numeriske 

nedbør-avrenningsmodellen HYPE med begge datasettene for sammenligning. Nedslagsfeltene 

varierer i område, hydrologisk regime og tilgjengelighet av nærliggende værstasjonsdata; de er 

stort sett uregulerte. Simuleringen ble gjort i et timestrinn for å sammenligne nedbørvariabilitet i 

detalj. 

I denne studien ble det utviklet en kalibreringsmetode som skaper sammenlignbare og 

reproduserbare resultater når det gjelder Kling–Gupta-effektiviteten (KGE) for hvert nedslagsfelt 

og datasett. En progressiv Monte Carlo-metode innenfor en trinnvis kalibrering ble brukt. De 

resulterende utslippstidsseriene og vannbalansene i nedbørfeltene ble analysert og sammenlignet. 

I tillegg ble utvalgte nedbørshendelser, der nedbørsproduktene ikke var i stand til å beskrive 

atmosfæriske prosesser på riktig måte, analysert i dybden. Datasettene ble videre sammenlignet 

ved romlig akkumulering av årlige nedbørsummer over nedbørfeltene, ved å bruke en værstasjon 

eid av et vannkraftselskap for å evaluere passformen til dataene og ved å sammenligne avrenning 

og nedbørsmengde i bassengene. 

Det viste seg at bruk av rå radardata ikke er rimelig på grunn av stråleskjermings- og 

dempningseffekter, spesielt i innlandet, samt en høy underestimering av nedbørsmengden. En 

modell med seNorge2 viste farbare resultater under kalibrering, men falt betydelig under 

validering. NWP så ut til å produsere mer stabile modellytelser og hadde bedre samsvar med hensyn 

til vannbalanse og deteksjon av småskala nedbør. Modellytelsen er imidlertid lavere i de fleste 

nedslagsfelt.  

Under en sensitivitetsanalyse ble ulike modellusikkerheter funnet og diskutert. De inkluderte 

ufølsomme parametere som ikke konvergerte under kalibreringen. I tillegg viste veksling av 

kalibrerings og valideringstidsperiode ustabilitet i modellresultatene avhengig av den valgte 

tidsperioden i noen nedbørfelt. Individuelle parametere ble også evaluert. Noen av dem viste fysisk 

rimelige verdier, men for eksempel virket elvehastigheten til å være unaturlig høy i noen tilfeller. 
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1 Introduction 
Creating accurate and applicable discharge information of river systems for forecasting, planning 

or hydro power assessment is the aim of hydrological models. In Norway, hydro power produces 

about 90 % of Norwegian total power production (Norwegian Ministry of Petroleum and Energy 

2021). That’s why it is important to provide accurate forecasts and assumptions of water 

availability. The main cause of runoff is precipitation. Since precipitation has a high spatial and 

temporal variability over a large range of scale (Berne and Krajewski 2013), it is necessary to provide 

measurement data that captures these variabilities. For distributed models and simulation of 

streamflow of hydrological models, accurate precipitation data is required (Syed et al. 2003). The 

uncertainty of simulated discharge can be caused by inaccurate precipitation data to a large extend 

(Bárdossy et al. 2022). 

Precipitation is measured the most accurate by rain gauges (WMO 2008). However, they aren’t free 

of measurement errors. Førland et al. (1996) stated that in Nordic countries precipitation is 

underestimated by ground measurements because of wind-induced errors. In wind-exposed 

coastal and mountainous areas, precipitation may be underestimated by more than 50 % in winter, 

and an underestimation will probably also occur in summer for unshielded gauges (Førland et al. 

1996). Besides aerodynamical effects, evaporation from gauges, snow drift, splashing and leakage 

can also influence the accuracy of gauge data. Besides measurement errors, the density of gauges 

in Norway is scarce in mountainous areas and in the north (Lussana et al. 2018). That’s why other 

precipitation data sources have to be considered when setting up a hydrological model. 

In recent developments, radar measurements are increasing and can be used for hydrological 

models (Fitsum et al. 2013, Gonchukov et al. 2018). However, these measurements can have 

significant errors and limit hydrological application (Berne and Krajewski 2013). For example, when 

using Radio Detection and Ranging (Radar) various measurement errors like attenuation, clutters 

or beam shielding can appear. Still, radar data provides spatial precipitation distributions over a 

large range and can improve the precipitation estimation over a catchment, especially in data 

scarce regions. Another source of spatial precipitation distributions are numerical weather models 

describing fluxes in the atmosphere. These models can be reanalysed with observations and then 

be included into hydrological models. 

This study aims to test and evaluate different input products of hydrological models. As a first step, 

the datasets were generally analysed by comparing annual precipitation sums, correlations, mass 

balances and the relation of the data with private weather stations. Since the ground truth is not 

known, hydrological observations can provide information about meteorological processes in the 

catchment and therefore verify observations and numerical models.  

In this thesis, five catchments that are located in different hydrological regions in Norway were 

chosen for hydrological modelling. A Hydrological Predictions for the Environment (short: HYPE) 

model developed by the Swedish Meteorological and Hydrological Institute (short: SMHI) was 

employed. The model was calibrated with different precipitation datasets. An hourly gauge 

interpolated dataset (seNorge2), an hourly dataset based on a numerical weather model combined 

with gauge and radar data (MEPS-Nordic) and in some of the catchments gauge data were used to 

model the study sites. To create reproducible results, different calibration methods were tested 

focusing on the optimisation method, number of simulations, multi-gauge calibration and handling 

low flows. After calibration, the results were analysed by evaluating the model performance, water 

balance and looking at specific events. An inverse hydrological model, that was developed by 

Kirchner (2009), was applied for these events to compare simulated precipitation based on 

discharge data with the estimated precipitation from the datasets. At last, a sensitivity analysis was 

done for the model using a Generalized Likelihood Uncertainty Estimation (GLUE) method to test 

the model uncertainty and its equifinality (Beven and Binley 1992). 
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2 Theory 
This chapter provides an overview over basics of hydrological models, calibration methods and 

objective functions as well as inverse hydrological modelling. Different measurement methods of 

precipitation are discussed as well as their spatial information. At last, studies where hydrological 

models were applied for testing precipitation datasets are described. 

2.1 Hydrological models 
Hydrological models are simulating the water cycle in a system using mathematical functions to 

reconstruct physical processes. In general, the runoff (Q) of a catchment is calculated as the 

difference between precipitation (P) and evapotranspiration (E) plus storage changes (dS). 

 𝑄 = 𝑃 − (𝐸 + 𝑑𝑆) Eq. 1 

Runoff and evapotranspiration drain the catchment, precipitation is the inflow. Storage changes 

are typically caused by changes in the soil moisture, snow accumulation, glaciers, or groundwater 

storages. Over long time periods the storage change is usually zero (Ojha et al. 2008). 

Precipitation data is one of the most important inputs for a hydrological model (Wood et al. 2000). 

Usually, it is measured by point stations located in the catchment. Since the distribution of 

precipitation can have an influence on the hydrologic response (Yang et al. 2013) or is locally 

concentrated (Berg et al. 2016), there is a necessity of having accurate precipitation data, that also 

describes the spatial distribution. This can be archived by using remote sensing data (weather 

radars, satellites) or simulate the precipitation using numerical weather models. 

Evapotranspiration leads to water loss in the system, because of water vaporizing from the soil, 

plants, lakes etc. There is a difference between potential evapotranspiration (PET), that only 

depends on climatic factors and actual evapotranspiration (AET), that is limited by the amount of 

available water in the system (Thornthwaite and Mather 1951). A possible measurement method 

for evapotranspiration is a Lysimeter, but usually the evaporation is calculated by using an empirical 

mathematical equation. PET is calculated by using climatic variables, for example temperature, 

radiation and wind speed (Hargreaves and Samani 1985, Allan et al. 1998). AET can be estimated 

within a model to take the water availability into account. 

Discharge is a typical output of hydrological models. Measurement methods can be tracers, flow 

meters or ultrasonic sound, or the discharge can be calculated using rating curves (NVE 2015a). 

These curves can be applied in hydraulically controlled sections, where the relation between water 

level and discharge is known. Accurate discharge data is important for the calibration and validation 

of the model.  

Typical applications of hydrological models are flood and drought forecasting, assessment of water 

resources, simulating scenarios of human impacts and hydropower modelling (Beck et al. 2017). A 

lot of different hydrological models have been developed over the years. In general, they are 

distinguished in deterministic and stochastic models. Deterministic models can be classified into 

empirical, conceptual, and physically based models: empirical models describe a precipitation-

runoff relationship that is based on observations (Sitterson et al. 2018), conceptual models use 

observed empirical relationships to build a precipitation-runoff-model and physically based models 

use only physical laws to calculate the runoff (Liu et al. 2017). A deterministic model always 

calculates the same output, unlike a stochastic model, that has a partial randomness (Milad et al. 

2012). Models can also vary in temporal (from event to decade) and spatial (small to global) scale. 

There are distributed, semi-distributed and lumped models. Lumped models average the 

catchment without taking spatial distribution into account, semi-distributed models divide the 
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catchment into a certain amount of sub-catchments and fully distributed models are divided into 

grid-cells (Sitterson et al. 2018).  

2.1.1 Calibration and validation 
A hydrological model consists of state or prognostic variables that define the processes within the 

catchment. To create a consistent model that is close to observed discharge measurements these 

parameters have to be calibrated. The resulting parameters are then applied on another time 

period, location or season to evaluate the applicability. This process is called validation. During 

calibration, an optimal parameter set is detected that results in the best agreement of simulated 

and observed discharge according to the objective function. Over the years, different criteria were 

developed that describe the performance of a model. They are important for the calibration as an 

index of agreement, since they decide which parameter set is assumed to be the best fit. The 

resulting parameter set can also vary depending on the objective function. It describes the 

goodness of fit of a model. There are different functions available, some of them are described 

here.  

First introduced by Nash and Sutcliffe (1970), the Nash-Sutcliffe-Efficiency (NSE) is a commonly used 

criteria for quantifying model performances. NSE is the quotient of residual variance and initial 

variance. It is calculated by using simulated values (xi), observed discharge values (qi) and the 

average observed discharge (𝑞̅). The NSE tends to be influenced by outliers, time-offset bias and 

magnitude. High discharges have more influence on the NSE and low discharges get neglected, 

because of the squared difference (Krause et al. 2005). Still, it is a reliable goodness-of-fit (McCuen 

et al. 2006).  

 𝑁𝑆𝐸 = 1 −
∑ (𝑥𝑖 − 𝑞𝑖)

2𝑛
𝑖=1

∑ (𝑞𝑖 − 𝑞̅)2𝑛
𝑖=1

 Eq. 2 

Another criteria is the Kling-Gupta Efficiency (KGE) described in Gupta et al. (2009). KGE is a multi-

objective criteria, where correlation (r), variability error (using the standard deviation 𝜎) and bias 

error (using the mean 𝜇) are considered. They are combined by applying Euclidian distance. The 

KGE can have values between -∞ and one, with one being a perfect model fit. The relation between 

NSE and KGE is non-unique and can therefore not be compared directly (Knoben et al. 2019). 

 𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚
𝜎𝑜𝑏𝑠

− 1)
2

+ (
𝜇𝑠𝑖𝑚
𝜇𝑜𝑏𝑠

− 1)
2

 Eq. 3 

Another performance measure is using the correlation between two datasets. Correlation 

quantifies the interdependence between variables. An example of that is the Pearson correlation 

(r). The Pearson correlation is a quantitative measure to determine the linear relationship between 

two variables (Boslaugh and Watters 2008) and has a value between -1 (negative correlation) and 

1 (positive correlation). A value around zero represents a weak or non-linear relationship. It is 

calculated according to Eq. 4 with the sample size n, sample points xi and the mean of the sample 

𝑥̅. 

 𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 Eq. 4 

The Pearson correlation gives no information about the proportion of variation (Boslaugh and 

Watters 2008). The coefficient of determination (r2) however can provide that information by 
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describing how differences of one variable can be explained by another variable. For that, the 

Pearson correlation is squared. 

 𝑟2 = (
∑ (𝑥𝑖 − 𝑥̅)(𝑞𝑖 − 𝑞̅)𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑞𝑖 − 𝑞̅)2𝑛

𝑖=1

)

2

 Eq. 5 

Another possibility to calculate the correlation of a sample is by using the ranks of the variables. 

This approach is called Spearman rank order coefficient (rs). This coefficient is less sensible towards 

outliers, because ranks instead of values are applied (Al-jabery et al.). It is calculated by ranking two 

samples (here: sample 1 and 2) and calculating the correlation of the ranks. 

All these criteria are not scale dependent. That is important when comparing different datasets 

with each other that have different scales. The usage of scale dependant methods for calibration is 

possible as well. The most common used scale dependent measure is called Mean Square Error 

(MSE) or Root Mean Square Error (RMSE). RMSE is often preferred because it is on the same scale 

as the data (Hyndman and Koehler 2006). 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥𝑖 − 𝑞𝑖)

2
𝑛

𝑖=1
 Eq. 6 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑖 − 𝑞𝑖)

2
𝑛

𝑖=1
 Eq. 7 

Although they are widely applied, they are more sensitive towards outlier than the Mean Absolute 

Error (MAE) or the bias (Hyndman and Koehler 2006). The bias can be made scale-independent by 

calculating the relative bias (RE). 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑞𝑖|

𝑛

𝑖=1
 Eq. 8 

 𝑏𝑖𝑎𝑠 =
1

𝑛
∑ (𝑥𝑖 − 𝑞𝑖)

𝑛

𝑖=1
 Eq. 9 

 𝑅𝐸 =
∑ (𝑥𝑖 − 𝑞𝑖)
𝑛
𝑖=1

| ∑ 𝑞𝑖|
𝑛
𝑖=1

 Eq. 10 

2.1.2 Sensitivity and uncertainty analysis 
Finding an individual set of parameters with the best model performance during a model calibration 

is no indication for the certainty of a model prediction. This is for example caused by the existence 

of many combinations of parameter sets that can result in the same model performance 

(Sorooshian 2008). An analysis to assume the uncertainty of parameters should be applied. In a 

sensitivity analysis, the uncertainty of a model input can be appointed to sources of uncertainty in 

the model inputs. 

A sensitivity analysis is the critical examination of the relations between input and output of the 

model. The aim is to identify parameters that have a strong impact on the model results, as well as 

interactions between them and their spatial variability. There are different sources of uncertainty, 

like the model structure, parameter values, input data and boundary conditions (Beven and Binley 

2014). A sensitivity analysis can help to identify potential deficiencies in model structure and 
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formulation, be a guide for parametrization and analyse the information given by observations 

(Devak and Dhanya 2017). 

According to Devak and Dhanya (2017), different types of information can be extracted during a 

sensitivity analysis. One result is the determination of response surface, meaning to find the most 

influenced area depending on the model or the input data. A determination of the most influential 

uncertain parameters to rank the influence of the input parameters. Determining interaction 

between the parameters to find out the nature of processes. Finding non-influential parameters 

and remove them to reduce the model complicity. 

There are different approaches for a sensitivity analysis. A simple approach is varying parameters 

one at a time. That means one parameter is changed with a specific criterium while all others are 

fixed. The model is run and the change of the output analysed. This method however does not 

provide information about combinations of parameters, especially in highly parameterized and 

complex models (Devak and Dhanya 2017). 

For more complex systems with a higher interaction between parameters, the variance-based 

method can be applied. Here, the variance of the output is compared with the variance of the input 

while one parameter is fixed and the others are varied. The variance of the output data can then 

be an index of the sensitivity of that parameter (Saltelli et al. 2010). 

Another approach was introduced by Beven and Binley (1992) and has been applied numerous 

times. The method is based on the observation that different parameter sets lead to equal results 

according to performance measures. This is called an equifinality of model structures or parameter 

sets that create equal results giving a non-uniqueness to parameter sets and models (Beven and 

Binley 2014). The Generalized Likelihood Uncertainty Estimation (GLUE) method combines 

calibration and uncertainty assessment and allows equifinality. The model outputs are weighted by 

their calibration period performance. The set of best predictions (behavioural model space) is then 

used for the expression of uncertainty. For that, the model is executed with different parameter 

sets and the variance of the results is used for uncertainty assessment (Sivasubramaniam et al. 

2020). The parameter space of the behavioural model space can further be applied for a sensitivity 

analysis and to test equifinality. Wide varying parameters are assumed to be less sensitive than less 

varying parameters. 

Another easy approach to test the reasonability of modelling results is to change calibration and 

validation time period to test the difference in the model performance. A model with accurate 

model structure and input data should not change the output drastically in that case.  

2.1.3 Inverse hydrological modelling 
In Kirchner (2009) a first-order nonlinear differential equation based on the water balance of a 

catchment (Eq. 1) is used for characterizing the basin. The precipitation (P), evapotranspiration (E) 

and discharge (Q) can provide information about the storage change (dS/dt). This means that the 

change of discharge is a function of storage. Recession curves can be used for quantifying the 

storage term. 

 𝑄 = 𝑓(𝑆) Eq. 11 

 𝑆 = 𝑓−1(𝑄) Eq. 12 

 𝑑𝑄

𝑑𝑡
=
𝑑𝑄

𝑑𝑆

𝑑𝑆

𝑑𝑡
=
𝑑𝑄

𝑑𝑆
(𝑃 − 𝐸 − 𝑄) 

Eq. 13 
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Because the storage is a function of Q (see Eq. 12), the derivative dQ/dS can be described as a 

function of Q. This function is called the sensitivity function of the catchment g(Q). By combining 

Eq. 1 with the derivative dQ/dS, the following relation can be created. 

 

𝑔(𝑄) =
𝑑𝑄

𝑑𝑆
=

𝑑𝑄
𝑑𝑡
𝑑𝑆
𝑑𝑡

=

𝑑𝑄
𝑑𝑡

(𝑃 − 𝐸 − 𝑄)
 Eq. 14 

Eq. 14 can be simplified when evapotranspiration and precipitation fluxes are low compared to 

discharges. These events occur for example for no precipitation and in the night time. 

 
𝑔(𝑄) =

𝑑𝑄

𝑑𝑆
≈
−
𝑑𝑄
𝑑𝑡
𝑄

|

𝑃≪𝑄,𝐸≪𝑄

 Eq. 15 

This function depends only on discharge measurements. The sensitivity function can be estimated 

by plotting the flow recession rate (-dQ/dt) as a function of Q (see Figure 1). The differential 

equation dQ/dt can be solved by assuming the flow recession rate to be a power law (-dQ/dt = aQb). 

With empirical measurements, g(Q) can be fitted according to the function: 

 

 
ln(𝑔(𝑄)) = 𝑙𝑛(

−
𝑑𝑄
𝑑𝑡
𝑄

|

𝑃≪𝑄,𝐸≪𝑄

) = 𝑐1 + 𝑐2ln⁡(𝑄) + 𝑐3(ln⁡(𝑄))
2 Eq. 16 

 
 

 

 
Figure 1: Example of a sensitivity curve with c1=-2.6, c2= 1.2, c3= 0.004 

 

Combining Eq. 13 and Eq. 14 yields to Eq. 17. This relation can be applied by calculating the 

discharge change of the next timestep with the discharge value of the previous one. 

 𝑑𝑄

𝑑𝑡
=
𝑑𝑄

𝑑𝑆

𝑑𝑆

𝑑𝑡
= 𝑔(𝑄) (

𝑃 − 𝐸

𝑄
− 1) Eq. 17 

The advantage of this method is that discharge data is directly used for the hydrological model, 

instead of being only included for calibration or certainty analysis. Discharge does not depend on 

spatial variability (in contrast to precipitation), because it is an accumulated measurement from the 

upstream area. Another advantage of this approach is that it can be inverted. This means a 
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“backward hydrology” can be created, where precipitation is calculated only based on discharge 

data and without calibration. For that, Eq. 17 can be rearranged to: 

 𝑃 − 𝐸 =

𝑑𝑄
𝑑𝑡

𝑔(𝑄)
+ 𝑄 Eq. 18 

In a precipitation event, the air humidity is saturated, resulting in a small evapotranspiration. That’s 

why it is assumed to be zero. In a discretised manner, the equation looks like this: 

 
𝑃𝑡 ≈ 𝑚𝑎𝑥 (0,

(𝑄𝑡+1 − 𝑄𝑡−1)/2

(𝑔(𝑄𝑡+1) + 𝑔(𝑄𝑡−1)/2
+ (𝑄𝑡+1 − 𝑄𝑡−1)/2) Eq. 19 

2.2 Point and spatial precipitation data 
As mentioned in the introduction, input data of hydrological model is the main source of 

uncertainty. This uncertainty is caused by measurement errors, unknown spatial variability and data 

scarcity. Especially precipitation data is a source of error, because of its high spatial and temporal 

variability as well as measurement error sources. In this section, different methods to measure 

precipitation and to assume its distribution are described. 

2.2.1 Gauges and point station interpolation 
A precipitation gauge is an instrument that directly measures the precipitation amount of unit area 

per time. It consists of a collection container that is placed in an open area (Acharya 2017). 

Precipitation is measured as height of a volume. That’s why the area of the container is not 

important, but should not be too small (Acharya 2017). The data can be received manually or 

automatically. In the past, the precipitation amount was manually obtained by checking the 

container and measuring the filling of it. Nowadays, this can be done automatically. Examples are 

tipping bucket rain gauges, where a bucket is filled until a threshold is achieved and the bucket tips 

creating an electrical signal (Acharya 2017). Other examples are weighting the precipitation amount 

inside the collector and calculating the precipitation height from weight changes during 

precipitation events or counting the number of drops by a photoelectric barrier. The measurement 

of snow is achieved by using collectors with heating function, so that the snow melts and is 

measured the same way as rain. 

Although gauge data is assumed to be accurate (WMO 2008) there are still some measurement 

errors because they are used in the open field. Some of them are discussed in the following. 

Detention water sticking at the inner wall of the collector and evaporating there can lead to an 

underestimation of precipitation. Additionally construction errors or wrong calibration of the 

gauges lead to an bias in the measurements (Sevruk 2004). Other errors can occur from influences 

of the nearby environment, for example leaves from trees, insects or walls. The highest source of 

error is however wind-induced under catch of precipitation (Sevruk 2004). An under catch is caused 

by turbulent wind fields above the gauge leading to a drift of rain drops and snowflakes instead of 

going inside the collector. Wolff et al. (2015) measured significant wind under catch in a field study 

in Norway. Especially for snow and high windspeeds, the under catch can be up to 80% of the 

precipitation amount. Rain measurements are less affected by wind. A relationship between 

windspeed, temperature and under catch was developed by Wolff et al. (2015). Figure 2 shows an 

example of under catches influenced by wind speed and temperature. 
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Figure 2: Under catch of precipitation dependent on the temperature and wind speed (Wolff et al. 

2015) 

 

Besides measurement errors, a point measurement does not provide information about the spatial 

distribution of the precipitation. Precipitation fields are of interest in hydrological models to 

calculate the areal precipitation amount. That is why different methods were developed that create 

spatial interpolated precipitation fields.  

When the areal precipitation (hN) is of interest, the easiest approach is averaging nearby gauges 

(hN,i) with weighting them all equally (Eq. 20). Another approach, called Thiessen Polygon, defines 

an area inside the basin (Ai) for every station. These areas can then be used as a weight for the areal 

precipitation (Eq. 21). Another method is interpolating the precipitation by using the distance (di) 

of the station to the catchment or a grid cell in the Inverse-Distance-Weighting (IDW) (Eq. 22). This 

method is one of the most used deterministic interpolation methods because of the easy 

implementation (Ryu et al. 2021). 

Averaging ℎ𝑁 =
1

𝑛
∑ ℎ𝑁,𝑖

𝑛

𝑖=1
 Eq. 20 

Thiessen Polygon ℎ𝑁 =∑
𝐴𝑖

∑ 𝐴𝑖
𝑛
𝑖=1

ℎ𝑁,𝑖
𝑛

𝑖=1
 Eq. 21 

IDW ℎ𝑁 =∑
(
1
𝑑𝑖
)
2

∑ (
1
𝑑𝑖
)
2

𝑛
𝑖=1

ℎ𝑁,𝑖
𝑛

𝑖=1
 Eq. 22 

Another possibility for interpolating precipitation data is using geostatistical approaches. These 

methods can take catchments characteristics into account by analysing the spatial variability in so-

called variograms. The main idea is that the variance between two nearby points should be smaller 

than points that have a higher distance (Sen 2016). It can be calculated by summing up the values 

(Z𝑖) squared difference between points with a specific distance (d). The number of values with that 

distance is nd. The semi-variogram equation is shown in Eq. 23. 
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 𝛾(𝑑) =
1

2𝑛𝑑
∑ (𝑍𝑖 − 𝑍𝑖+𝑑)

2
𝑛𝑑

𝑘=1
 Eq. 23 

Kriging is a geostatistical interpolation technique that depends on distance and variation between 

known points to calculate estimates of unknown points (Ryu et al. 2021). An empirical semi-

variogram function (γ) has to be fitted for that process. In the kriging process, weights for each 

surrounding point are calculated by using the fitted semi-variogram. It produces the best linear 

unbiased estimator of the values at locations with no information of the value (Zawadzki et al. 

2005).  

Another method is optimal interpolation. Here, observation data is paired with a background field, 

for example the topography or climatological fields. It is very similar to kriging (Sen 2016). The 

weighting coefficients get determined by minimizing the least square fit between point information 

and background field. 

A background field is also acquired in the Bayes Interpolation. In this method, the likelihood of the 

interpolated field (I) to the observation (O) and the background field (B) is maximized. The posterior 

probability P(O|I) must be maximized by maximizing the likelihood P(I|O) and prior P(I). To 

increase the likelihood, the interpolation has to be close to point observations, to increase the prior, 

the interpolation has to be close to the background field. 

 𝑃(𝑂|𝐼)⁡~⁡𝑃(𝐼|𝑂)𝑃(𝐼) Eq. 24 

2.2.2 Weather Radars 
Precipitation is heterogenous in time and space. Gauge stations measure point information about 

precipitation on the ground with sufficient accuracy for modelling purposes. Yet, when looking at a 

wide-scale catchment, the precipitation amount is not homogeneous. To take this into account, a 

dense gauging network is necessary. Since this cannot be provided everywhere (because of e.g. 

costs, data collection and infra structure), other spatial information has to be provided. Weather 

radars provide an overview over a wide scale in a high spatial and temporal resolution. They are an 

important tool for assessing the precipitation distribution (Collier and Hardaker 2004) and are 

capable to detect severe weather and precipitation over a wide scale.  

RADAR is an acronym for Radio Detection and Ranging and is an indirect measurement method, 

where radio waves are emitted by a transmitter and reflected by an object in the atmosphere. The 

reflected energy “echo” is then measured by the receiver (Raghavan 2003). According to the 

direction and time of travel of the echo the position of the object can be detected. If a target is 

moving radial to the radar, the reflected radiation will have a shifted frequency depending on the 

velocity of the target (doppler shift) (Gekat et al.). The radiation can be sent with horizontal or 

vertical polarization. The echo will then have the same polarization. When using both polarizations, 

an information of the spherical shape of an object can be archived (Raghavan 2003). Polarized 

radars can detect different shapes, orientations and dielectric constants of the rain drops and 

classify different rain types to improve the quantitative rain estimate (Gekat et al.). 

Besides the location of precipitation, the radar reflectivity (Z) provides quantitative information 

about the amount of water. Z is in relation with the drop diameter and the number of drops. Since 

the drop size distribution is usually not known, empirical laws were developed to calculate the 

precipitation rate (R). One possible relation was developed by Marshall and Palmer (1948) and uses 

a power law to describe the relation between reflectivity and rain rate (R). 

 𝑍 = 200 ⋅ 𝑅1.6 Eq. 25 
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This empirical relationship depends on the drop size distribution, as well as the phase of the 

precipitation and should be used cautiously (Raghavan 2003, Fujiyoshi et al. 1990, Joss et al. 1990). 

The interest in spatial distributed precipitation data is increasing, for example for accurate weather 

forecasts or to be used in hydrological models. Hydrological models nowadays are more spatially 

distributed and need spatial information of the precipitation (Berne and Krajewski 2013). Besides 

that, flash floods usually occur in small spatial scales and are often not measured adequately from 

gauge networks (Poméon et al. 2020 and Šálek et al. 2006). Radar data is more likely to capture 

such events. Lengfeld et al. (2020) found out, that only 17.3 % of hourly heavy precipitation events 

are captured by gauges in Germany compared to radar data. Another important application is urban 

hydrology where a high resolution of precipitation data is needed (Berne et al. 2004 and Einfalt et 

al. 2004). Because information about spatial distribution in the catchment area is usually not 

available in a comparable way from gauge stations (Syed et al. 2003), radar data can be used to fill 

information gaps. A possibility is improving the quantitative estimation by merging gauge data with 

radar measurement for spatial interpolation (Hasan et al. 2016, Sivasubramaniam et al. 2019). 

Furthermore, radars can provide precipitation measurements in ungauged areas (Berne and 

Krajewski 2013). 

Besides the advantages of weather radar data, the main disadvantage is erroneous data. Since the 

data is detected indirectly, many errors occur that need to be corrected. The most challenging ones 

are described in this paragraph. Clutters occur when stationary objects, for example buildings, 

mountains or the ground reflect the radiation and create an echo that is detected as precipitation 

(Gekat et al.). They can usually be corrected with “clear-sky” images. When travelling through the 

atmosphere, the radiation suffers attenuation. Attenuation depends on the precipitation amount 

as well as the precipitation state and is complicated to correct systematically (Gekat et al.). Another 

error can occur at the melting layer of a precipitation cloud. This layer is called the bright band. 

When snow is melting in that layer, a water film is covering the snowflake. The mix of water outside 

and a large diameter of the snow flake cause a high reflectivity that is detected by the radar. The 

height of the beam is increasing with range. This can cause missed precipitation events or 

measuring precipitation that evaporates before arriving at the ground. To avoid ground clutter, the 

radar beam is usually in an elevation angle. This causes a high altitude of the radar beam at higher 

ranges and leads to differences between the measured height and the ground level (Berne and 

Krajewski 2013).  In mountainous regions, effects like shielding, partial beam filling and beam-

broadening are dominant sources of error (Gekat et al.). Here, the radar beam is blocked in some 

range gates and the precipitation behind is not measured accurately (Berne and Krajewski 2013). 

Anaprops can occur when there are anomalous atmospheric conditions that change the 

propagation of the radar beam and result in wrongly located radar echos (Berne and Krajewski 

2013).  

Because precipitation is not measured directly from radars, another source of uncertainty is the 

relation between radar reflectivity and rainfall rate (Berne and Krajewski 2013). As mentioned 

before, the Z-R relation is empirical and does depend on the phase of precipitation, as well as the 

drop size distribution. Figure 3 shows examples of measurement errors of radars. The figure 

additionally shows errors like a wet radome, ships, aircrafts, chaffs, insects, and wind turbines that 

wrongly get classified as precipitation. 
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Figure 3: Examples of different radar measurement errors (Peura et al. 2006) 

 

2.2.3 Numerical weather prediction (NWP) 
Atmospheric processes are complex and non-linear. Numerical weather prediction (NWP) models 

estimate physical processes of the atmosphere and on the ground as well as their influence on air 

pressure, temperature, wind, clouds and precipitation. These physical processes can be described 

by using equations of fluid mechanics. The physical laws are based on energy, mass and momentum 

conservation (Kalnay 2012). The equations are differential and can only be solved in a numerical 

way by discretising them in space and time. A higher resolution increases the accuracy of a model 

(Kalnay 2012) but also increases the computing effort. To assure the stability of a model, the spatial 

and temporal resolution must be chosen in a reasonable matter.  

NWPs are divided into deterministic and stochastic models. Deterministic models calculate a single 

forecast with a given set of initial state variables and parameters. Stochastic models create a 

number of simulations with varying initial conditions (Auer 2018). 

An important task is to use the right initial conditions from observational data, because they are 

very sensitive in the model (Kimura 2002). Uncertainties in the initial state can lead to a high error 

in the forecast after some days (Wernli 2011). This is a major uncertainty, because there is never a 

full coverage of atmospheric variables available (Wergen 2002). Even for remote sensing data, that 

covers the area, the measurement can be biased or erroneous. Exact long-term predictions are not 

possible, because atmospheric flow is chaotic and not yet fully understood (Lynch 2008). Another 

challenge is to model convective precipitation, because of the small scale and the difficult forecast 

of these events (Lussana et al. 2021). 

Uncertainties can be considered by using ensemble prediction systems (EPS). A set of forecasts 

instead of a deterministic one is calculated here. With that, different scenarios of forecasts are 

created. If all scenarios behave in a similar way, the uncertainty of the forecast is low (Wernli 2011) 

and the other way around. The aim is to quantify the uncertainty of the forecast because of 

erroneous initial conditions or modelling errors. The different scenarios can be used for forecasting 

as well as quantifying the probability of a forecast (Wernli 2011). 

An example of an EPS is shown in Figure 4. Here, the initial state is assumed to be a probability 

distribution function (PDF). The numerical model then calculates different scenarios using different 

initial states according to the PDF. These ensembles are the thin black lines in the figure. 

Deterministic forecasts (thick black line) and actual observations (dotted line) are not similar in this 

example, whereas three of the ensembles show a more similar behaviour to the truth. 
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Figure 4: Example of EPS forecast (Lynch 2014) 
 

All models are based on the same equations, but can vary in mathematical formulation and 

discretization scheme (Kalnay 2012). An example is the model developed by the European Centre 

for medium-range weather forecasts (ECMWF), that solves differential equations with a semi-

langrangian, semi-implicit time scheme. The model has a grid size of 9 km and describes weather 

processes all over the globe. An ocean wave model is also included. The initial state is given by 

conventional and satellite data (Lynch 2008). Another model is the Application of Research to 

Operations at Mesoscale (AROME) developed by Météo-France in 2008 (Seity et al. 2011). It has a 

resolution of 2.5 km and covers Europe. The equations are solved in a semi-langrangian, semi-

implicit discretization scheme using finite differences. The resolution was chosen to be able to 

predict thunderstorms, that are usually in a range of three to six kilometres (Seity et al. 2011). Initial 

data is observed by for example radiosondes, wind profilers, aircraft reports, satellites and doppler 

radars (Seity et al. 2011). AROME was further applied on the Nordic countries by creating the 

AROME-MetCoOp (Meteorological Cooperation on Operational Numerical Weather Prediction 

operational weather) forecast (Müller et al. 2017). This model has a resolution of 2.5 km as well. To 

adapt it to the Nordic region, it was calibrated with radar reflectivity data, ground-based satellite 

observations and gauge observations (Müller et al. 2017). 

Possible applications of NWPs are short-range forecasting, warning of weather extremes and 

floods, marine guidance and predications of road ice (Lynch 2008). When modelling results get 

paired with observations, they are called reanalysed data. This data usually uses the model as a 

background, but takes observations (radar, gauge, satellites) into account, creating a spatial 

meteorological product. According to Lynch (2008), the best results can be achieved by combining 

NWP, observations (station, radar, satellite) and other data. Frogner et al. (2019) added that for 

smaller scale precipitation, post-processing should be done before using the model data. 

Reanalysed products can then be applied e.g. for hydrological models and risk assessments 

(Sivasubramaniam et al. 2020). 
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2.3 Evaluation of precipitation data with hydrological models 
Using hydrological models to evaluate precipitation datasets is an often applied approach. 

Examples will be discussed in this section. Besides the hydrological model, the choice of 

meteorological data has a considerable influence on the model performance, as te Linde et al. 

(2008) concluded in their study. If the ground truth is unknown, the application of hydrological 

models can be a good possibility to evaluate spatial distributed precipitation products. This can be 

done by looking at water balances (evapotranspiration, storage changes and discharge) or analysing 

the model performance.  

By creating a lumped hydrological model over the USA for 424 catchments, Essou et al. (2016) 

compared four climatic datasets. All these datasets were based on gauge-derived data with 

different interpolation methods. They found significant differences for the datasets, even though 

all of them were based on gauge data. Nevertheless, the impact of the datasets could be equalized 

during the calibration. Vaze et al. (2011) compared three different rainfall inputs with four different 

rainfall runoff models in 240 catchments (50-200 km2) in the southeast of Australia. The rainfall 

data was extracted from single rainfall stations as point information, interpolated Thiessen 

polygons, and as average of interpolated rainfall areas. The models were lumped. The results 

showed a better performance in the model when using input data with better spatial 

representation of rainfall. Ledesma and Futter (2017) compared instrumental and gridded spatial 

interpolated precipitation and temperature datasets by modelling six catchments (0.037 to 725 

km2) across Sweden using two different hydrological models. Each model was calibrated separately. 

According to the study, gridded dataset resulted in a higher Nash-Sutcliff-Efficiency. 

All of these studies showed a better performance of hydrological models with spatial interpolated 

rain gauge datasets. Nowadays, more information about the spatial distribution is known because 

of remote sensing technics and numerical models. Especially in data scarce regions, remote sensed 

or reanalysed data is the main source of meteorological information. For that reason, the data 

should be evaluated in better measured areas before applying them to data scarce regions. 

Radar measurements have increased in the past and can be used for hydrological models (Fitsum 

et al. 2013, Krajewski and Smith 2002). However, these measurements have significant errors and 

can limit hydrological application (Berne and Krajewski 2013). Usually, radar data leads to an 

underestimation of discharge when applied to a hydrological model. For example Gonchukov et al. 

(2018) used radar precipitation for modelling a flash flood in Russia. Uncorrected radar data lead 

to an sever underestimation of discharge. The model was improved by bias correcting the 

precipitation. The combination of radar and rain gauge data can improve the precipitation 

significantly (Boudevillain et al. 2016, Borup et al. 2016, Foehn et al. 2018). Yu et al. (2015) further 

combined radar data with NWP because of the mountainous area in Japan causing beam blockage 

of radar beams. They concluded that this combination creates reasonable results when modelling 

flood events. 

In Norway, different gridded datasets are available, including spatial interpolated, radar and 

numerical models. In the following section, different approaches to compare these products are 

summarized. In a previous SINTEF project, Abdella et al. (2012) tested three different precipitation 

products (gauge data, radar data and a combined product) by using a precipitation-runoff 

simulation. They examined daily radar-derived data, interpolated station data and a combination 

of those two. The simulation was done in 50 catchments at two radar range areas of Rissa and 

Hægebostad. That precipitation was fed into a distributed and a lumped model. They detected that 

the combined products calculated the best results based on NSE, bias and correlation coefficient. 

Still, all the input products led to an underestimation of runoff. The highest underestimation was 

found when using radar data. These results showed a bias in gauge and radar data, for example 

caused by beam blockage, under catch and a wrong Z-R relation.  
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Another model based on radar data was used by Reinemo (2012), that employed a Mike Urban 

model of the city of Trondheim during a flood in August 2007. Since extreme weather events are 

usually very variable over space and time, radar data with a resolution of 250x250 meters was used 

in a temporal resolution of one minute. The results showed a better simulation of critical areas with 

radar data than when using gauge data. The reason for that was the high local variability of the rain 

event. 

Sivasubramaniam et al. (2020) made a case study comparing hydrological models with different 

precipitation input datasets. The three study sites had an area between 200 and 700 km2. They 

compared precipitation from gauge measurements, interpolated station data and precipitation 

calculated using a numerical weather model. A time interval of three years for calibration and two 

years for validation was chosen. When comparing the correlation between model-based and gauge 

precipitation, it was found that the hourly values are variable, whereas the daily sum showed better 

results. The model performance with model-based precipitation showed comparable results to 

gauge and gridded datasets. The simulated flow volume also showed comparableness.  

A different approach was used by Hailegeorgis et al. (2016), were a “top-down” model invented by 

Kirchner (2009) was implemented in the Gaula catchment, Norway. This was done with an hourly 

timestep and a distributed model in a mountainous area with a catchment area of over 3000 km2. 

They used precipitation, wind speed and humidity data from gauge stations. The study showed 

acceptable results of these catchment in calibration and validation. However, the precipitation was 

not calculated as an inverse approach in this study. 

In all of these studies, meteorological data was compared by using hydrological models and 

different input datasets. Most of these studies calibrated the catchment for each dataset 

individually. In general, spatial information seems to improve the model results, even with 

interpolated gauge data. Radar data can be used for hydrological modelling. It is especially an 

advantage for small-scale precipitation events. Still, radar data tends to underestimate the 

precipitation amount. A combination of gauge and radar data leads to better modelling results. 

Numerical model data can also be used as input data, because comparable results were created 

with them.  
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3 Material 
This chapter includes an overview over the hydrological model that was applied for comparing 

precipitation datasets. The model was executed for five study sites in Norway. Their characteristics 

and location are described in the second section. A description and summary of the meteorological 

and hydrological measurements and products available in Norway is given in the last section. 

3.1 HYPE model 
HYPE was developed by the Swedish Meteorological and Hydrological Institute (SMHI 2021). It is 

applied for small and wide scales, even a land surfaces worldwide covering version was 

implemented by the SMHI (Arheimer et al. 2020). The main idea is to divide landscapes into 

different classes according to soil type, land use and altitude (Lindström et al. 2010). It was 

developed due to a lack of spatial distributed models with simple implementation and ability to 

simulate water quality (Lindström et al. 2010). HYPE is open source with the aim to be as simple as 

possible to be more flexible towards changing the source code. In the following chapters, HYPE is 

briefly explained. More information can be found on the HYPE documentation website (SMHI 

2021). 

3.1.1 Model structure and input parameters 
The model domain consists of different sub-basins which are divided into classes. These classes are 

not dependent on location. It is possible to divide one basin with different land uses and soil types 

into a number of classes (Lindström et al. 2010). These classes are called “soil type land use 

combinations“ (SLCs). They can be compared to hydrological response units in HBV (SMHI 2021). In 

the Norwegian HYPE model first implemented by Schönfelder (2017) seven SLCs were defined. 

These classes are water, mountain, forest, marsh, glacier and a combination of urban and 

agriculture land use.  

Water is divided into two special classes called ilake and olake. An ilake is defined as a lake inside a 

sub-catchment, that can store and evaporate water according to PET. An olake is located at the end 

of a sub-catchment (or a whole sub-catchment is defined as an olake). That way a lake has a high 

influence on the outflow discharge because of for example damping a flood curve. Discharge of 

olakes is implemented by using a water level-discharge relation. Parameters of this relation can be 

calibrated for the whole catchment (with possibly more than one lake) or added for each lake itself 

as input data. Another distinction in HYPE is made between main rivers and local streams. Main 

rivers concentrate discharge coming from local streams in the sub-catchment. Main rivers also 

include inflow of water from the upper catchments. 

It is possible to model up to three soil layers in one SLC with variable thickness in each layer. Water 

retention can be varied by the parameters wilting point, field capacity and effective porosity (SMHI 

2021). Water retention is allocated evenly between soil layers dependent on their thickness, or 

these parameters can be defined per soil layer. In this thesis, soil and land use were assumed to be 

similar, meaning that a specific land use has the same soil layers in each region and not a 

combination of different soils. 

The runoff in HYPE is divided into groundwater runoff, depending on effective porosity, water level, 

surface runoff, when the water level is above the upper soil layer, and runoff through drainage 

pipes, which was not included in this thesis. Another water flow is infiltration of rain and snow melt 

into the upper soil layer and percolation between soil layers, depending on their field capacity 

(SMHI 2021). A summarizing flow chart can be found in Appendix A, Figure 46. 
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3.1.2 Automatic calibration 
HYPE provides nine different automatic calibration methods. They are based on either Monte Carlo, 

Differential Evolution Markov Chain, Brent, method of steepest decent or quasi-Newton (SMHI 

2021). Two of them, that showed a good efficiency and model performance in Schönfelder and 

Baclet (2022), are described in this chapter.  

3.1.2.1 Differential Evolution Markov Chain 
The Differential Evolution Markov Chain (DEMC) is a combination of a Differential Evolution method 

(Storn and Price 1995), an algorithm searching for a numerical optimum between parameter spaces 

(Braak 2006) and the Markov Chain Monte Carlo method, where random samples are generated, 

that depend only on the previous sample and are getting accepted or rejected, depending on their 

Metropolis-Hastings ratio (van Ravenzwaaij et al. 2018). The Metropolis-Hastings ratio is calculated 

by using a fitting function (π) of new and previous samples. The DEMC method fixes the problem of 

deciding jump sizes of the Markov Chain by including differences between two random parameter 

vectors (Braak 2006). In HYPE, the following parameters for DEMC are implemented. 

• DEMC_ngen:   number of generations 

• DEMC_npop:   size of generations 

• DEMC_gammascale:  determines how much the randomly generated dataset  

contributes to the new parameter set 

• DEMC_sigma:   derivation of random parameters 

• DEMC_crossover:  probability to not use mutated parameters 

• DEMC_accprob:  decides whether only better results are saved  

 

The number of simulations depends on the number of generations and size of these generations 

(N = DEMC_ngen x DEMC_npop). In Figure 5 the process of the DEMC calibration is visualized. 

 

 
Figure 5: simplified DEMC process according to the algorithm provided in Braak (2006). 
 

3.1.2.2 Progressive Monte Carlo Method 
Progressive Monte Carlo is a directed Monte Carlo approach that takes the direction of the best 

results by reducing parameter spaces during calibration. For that, a certain amount (num_bpmc) of 

random parameter values are generated and simulated. After that, the best n numbers of results 

Iterate over n_gen (i) 

Iterate over n_pop (j)

1. Randomly select two chains (j1,j2)

2. Propose new sample jp=f(i-1, i, j, j1, j2)

3. Calculate acceptance probability through Metropolis-Hastings ratio          

r =
π(jp)

π(j)

4. Accept sample (j=jp) with probability min(1,r) or continue with j otherwise
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(num_ens) are saved and the parameter space is reduced according to parameters of the best 

simulations. The next stage begins with reduced parameter space and again a certain number of 

random generated parameters are simulated. This is repeated until the maximum number of stages 

(num_bpmax) is reached (SMHI 2021). 

• num_ens:  number of best runs that are retained to form the next stage 

• num_bpmc:  model simulations per stage 

• num_bpmax:  number of stages 

 

The number of calibrations is calculated as a product of stages times number of simulations in each 

stage (N = num_bpmc x num_bpmax). Figure 6 shows an example of this calibration process. 

 
Figure 6: process of Progressive Monte Carlo, num_ens = 5, num_bpmc = 200, num_bpmax = n 
  



Material 

3.2 Study areas 

18 

3.2 Study areas 
This study consists of five test cases where HYPE was applied. These catchments were selected with 

different criteria. Excluding catchments that are mostly influenced by hydropower, the remaining 

basins needed to have existing discharge measurement stations that have hourly data on the same 

time interval as the input data available. Another criterion is the amount of precipitation gauges 

near the catchment and the nearby radar stations. They also vary in size and altitude. A summary 

of characteristics and land uses of the five catchments is given in Table 1. 

 

Table 1: Catchment characteristics and land uses 

Catchment 
Area  

Mean 
Elevation 

Min 
Elevation 

Max 
Elevation 

Mean 
slope River length  

 
km2 m.a.sl m.a.sl m.a.sl  ° km 

Nausta 278 608 0 1467 16.7 561 

Gaula 3659 674 0 1319 7.74 903 
Usma 42 735 498 1058 10.6 111 

Surna 1221 648 0 1664 12.0 263 

Grunnåi 85 960 193 1411 14.4 27 

SLCs Water Mountain Forest Marsh Glacier Urban/Agriculture 

 % % % % % % 

Nausta 2.7 24.0 21.4 42.6 0.0 9.3 

Gaula 2. 21.4 25.9 43.0 0.0 7.7 

Usma 1.2 42.4 12.9 43.5 0.0 0.0 

Surna 2.9 26.2 24.1 39.2 0.1 7.6 

Grunnåi 3.1 24.2 31.8 40.5 0.0 0.4 

 

To have a representative study over different regions in Norway the catchments were compared to 

a study of Gottschalk et al. (1979) that divided Norway into different hydrological regions. 

According to this study, Norway consists of six regimes. One of them being a mountain regime 

(H1L1), with high discharges in spring caused by snowmelt and low discharges in winter because of 

snow accumulation Another regime is called Atlantic regime (H3L3) which is more influenced by 

rainwater instead of snowmelt and has low flows during summer caused by less precipitation and 

a higher evapotranspiration. The inland regime (H2L1) is a transition zone between dominant rain 

and snowmelt discharges with low discharges in winter. There are three other regimes, two of them 

being transition regimes and one is the Baltic regime (H2L3) with a mix of rain and snowmelt water 

in spring and low flows in summer. The position of the regimes and locations of the catchments are 

visualised in Figure 7. The categorization of the test catchments in this thesis to the locations is 

summarized in Table 2. In the following sections, each catchment is described briefly. 

 

Table 2: Location of the catchments according to their hydrological region (Gottschalk et al. 1979) 

Regime  Catchments 

mountain regime (H1L1), Gaula, Usma, Surna, upper basin of Nausta 

inland regime (H2L1) Grunnåi 

Atlantic regime (H3L3) Lower basin of Nausta 

Baltic regime (H2L3) Parts of Gaula and Surna 

transition regimes (H2L2) - 

transition regimes (H3L2) - 
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Figure 7: Hydrological regions in Norway according to Gottschalk (1979) and locations of the 

catchments. Map taken from Gottschalk (1979) 

3.2.1 Nausta 
Nausta is located at the upper west coast of Norway. With an area of 277 km2 and an elevation 

between 0 and 1,467 m above sea level (a.s.l.), with a mean elevation of 608 m a.s.l., it is relatively 

steep. This catchment is unregulated, except for some small hydropower stations, that don’t 

influence the hydrology in a significant way. For that reason and its location at the Atlantic coast, 

Nausta was added as a study area in this thesis. 

A main part of Nausta is marsh area (43 %), with mountain areas at the edges of the basin and 

forest, agriculture land and urban areas located at lower elevated areas near the Nausta river. 

These areas are mostly crop fields with houses spread unconcentrated over the area. There is one 

city located at the river mouth. According to recent studies, there were about 2,600 citizens living 

in Naustdal in 2019 (IMDi 2019). There are some lakes located in the upper catchments and in the 

lower basin. Because of its position and inflows from different sub-catchments one lake was 

handled as an olake (see sub-catchment 6 in Figure 8).  

According to the land use (SLC) a small part of Nausta is glaciated area. The area classified as glacier 

has a size of about 10,000 m2. Using an area-volume relation proposed by Bahr et al. (1997) and 
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Bahr et al. (2015), the glacier volume is estimated with 57,164 m3. Assuming that the glacier is fully 

melting in summer (April-September) leads to a mean discharge of 0.004 m3/s. Even if the glacier 

volume would melt in only one month, there would just be a discharge of 0.02 m3/s. Since these 

discharges are low compared to measured outflows out of the catchment, a glacier influence was 

not considered in the model. Another reason for not including glacier influence is that according to 

another source there is no glacier located in Nausta directly (NVE Atlas). Although there are seven 

glaciers near, all of them are located north of the mountains outside the catchment (see Figure 48 

in Appendix B.1). A map of the SLCs is illustrated in Figure 9. A summary of characteristics of Nausta 

can be found in Table 1. 

 

 
Figure 8: Location, elevation, rivers, lakes and discharge measurement stations of Nausta 
 

The catchment includes three discharge measurement stations, that are in the upper, middle and 

lower basin. Since Yveste Langvatn and Nesvatn station weren’t collecting data for more than 20 

years, they were not included in this study. The station used for model calibration is named 

Hovefoss and is collecting data since 1998 with a timestep of 30 minutes (see also Table 5 in chapter 

3.3.3). 

 
Figure 9: SLCs of Nausta 
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As seen in Figure 10, there is a high seasonal variability in the catchment. Beginning in September, 

the temperature in the area is dropping and reaching a mean daily temperature below 0 °C in 

November. The discharge in September is high, because of a high amount of precipitation in 

autumn, but decreases together with temperature due to more solid precipitation and frost in 

winter. The lowest temperatures are in the winter months of January and February with daily mean 

temperatures of about -5 °C. Discharge reaches its minimum in February and March. When 

temperatures rise above 0 °C in April, the discharge increases fast due to snow melting in the 

catchment. The discharge peak is in Mai with about 30 m3/s, although there is not a lot of 

precipitation in that month. In summer discharges are decreasing caused by less precipitation and 

high evapotranspiration.  

 

 
Figure 10: Seasonal mean course of temperature, precipitation and discharge (measured in 

Hovefoss) in a time span of 20 years (2000-2020). Data: SeNorge2018 
 

3.2.2 Gaula 
Gaula is with about 3,600 km2 the largest chosen catchment. It consists of over 200 sub-catchments 

and includes eleven discharge measurement stations. It was chosen because of its high amount of 

available discharge data with long time series as well as a large area, where the distribution of 

precipitation has a higher influence in calculating the runoff. Gaula is located south of Trondheim 

with a river mouth west of the city. Elevation reaches from 0 to 1,319 m a.s.l. with a mean slope of 

8 °. Some lakes are located in the upper basin as well as four large lakes north-east of Gaula. These 

lakes are reservoirs for hydropower stations. Because of hydropower paths between reservoirs and 

hydropower stations, the flow is not natural everywhere. These catchments with unnatural flowing 

conditions were not included for the calibration. There are also smaller hydropower stations west 

of the basin. It was assumed, that they don’t impact the hydrology, since they are not using 

reservoirs. 

In higher elevated areas of Gaula, the land characteristics are mostly marsh and mountain areas. In 

lower elevated areas are forests, agriculture and urban areas (see Figure 50 in Appendix B.1 and 

Table 1). The city Melhus is located in the lower basin with a population of 17,000 citizens (Statistics 

Norway 2021). In addition, parts of Trondheim are included in northern parts of the catchment.  
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Figure 11: Location, elevation, rivers, lakes and discharge measurement stations of Gaula 

 

There are seven discharge measurement stations located in the area. Five of them are currently 

active, with two additional stations collecting data until 2019. All of these have a timestep of one 

hour or less since 2000 and are therefore suitable for calibration and validation of the model. 

Figure 12 visualizes the upstream area for each gauge. The characteristics of these catchments are 

summarized in Table 3. 

 

Table 3: Characteristics of Sub-catchments in Gaula 

Catchment SUBID River Upstream 
Area [km2]   

No. Upstream 
basins 

Mean 
Elevation [m] 

Mean Slope 
[°] 

Gaua 200 Gaua 80 4 465 9.8 
Lillebudal bru 242 Bua 171 9 913 9.5 
Killingdal* 52 Gaula 226 11 882 7.1 
Hugdal bru 102 Sokna 545 33 653 8.5 
Eggafoss 126 Gaula 655 38 833 7.6 
Gaula ovf. Fora* 124 Gaula 1404 84 746 7.6 
Gaulfoss 108 Gaula 3060 193 730 7.7 
* only/mostly daily discharge series available 
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Figure 12: Upstream area for each of the gauges located in Gaula 
 

 

The seasonal variability is visualized in Figure 51 (Appendix B.1). In agreement to Gaulas 

hydrological regime (Gottschalk et al. 1979), the discharge is dominated by snow melt in the spring 

time and has low flow conditions in winter. The mean temperature of Gaula is negative between 

November and April, with a minimum temperature below -30 °C. There are no strong variabilities 

in the precipitation except for a small decrease of precipitation in spring. 

3.2.3 Usma 
Usma is located south of Trondheim in Trøndelag and is with an area of about 42 km2 the smallest 

of the study sites. It was chosen because of a lack of weather stations near the catchment. The 

nearest rain gauge is located 30 km away from Usma and is likely to not represent meteorological 

situations of the catchment correctly. This evaluation is part of the HydroCen project 

(https://www.ntnu.no/hydrocen/5.-vannkraftressurser-og-flerbruksinteresser), where more 

detailed hydrological data all over Norway will be provided. 

The Usma river is an inlet into Nidelva, a large river that ends in Trondheim. Usma is mostly 

unregulated, with a dam located at the outlet of the basin. There, water is diverted through a 

hydropower tunnel into a hydropower station with a capacity of 10 MW. There is one lake with an 

area of 0.4 km2 in Usma. Because of the size and four upstream sub-catchments connected with 

the lake, it was modelled as a sub-catchment (olake). Usma has an elevation between 500 and 

1,050 m a.s.l with a mean slope of 10.6 °. The area consists mostly of marsh, mountain and forest 

areas, with no urban or agriculture land use. Table 1 summarizes the characteristics of Usma.  

There is one discharge measurement station available. This station is maintained by 

TrønderEnergi AS for observing the hydropower station. There is no information about the quality 

of this measurement. An overview over the catchment is given in Figure 13 and a map of land uses 

can be found in Appendix B.1, Figure 52. 

https://www.ntnu.no/hydrocen/5.-vannkraftressurser-og-flerbruksinteresser
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Looking at climatic parameters of Usma (see Figure 48, Appendix B.1), precipitation, discharge and 

temperature share the same variability as Gaula, due to the close location of these catchments. The 

discharge agrees with mountain regimes defined by Gottschalk et al. (1979). 

 

 
Figure 13: Location, elevation, rivers, lakes and hydropower locations of the Usma catchment 

 

3.2.4 Surna 
Surna is located in Trøndelag with a river mouth at the sea. The catchment has a high elevation in 

the south and is flatter in the north. The area is 1,221 km2 with a mean elevation of 648 m a.s.l. Two 

large lakes are located in the basin that are influenced by glacier melt. Surna is highly regulated by 

power plants, especially through the lakes in the catchment that are used as reservoirs. Because of 

a decrease of discharges during low flow conditions in Surna, there has been a decrease of fish 

population. Especially in winter, the fish can’t adapt to low flow conditions (Thorstad et al. 2003). 

To analyse the severity of the intervention into nature, the population of fish will be measured and 

analysed during the DynaVann project (https://www.ntnu.no/hydrocen/dynavann). To compare 

fish population with discharges (especially low flows), a hydrological model is created that 

generates discharge data for further analysis. 

Not regulated areas of the catchment are upper parts of the basin. The only available discharge 

station in a not regulated area is Rinna (see red borders in Figure 14). The model will therefore be 

calibrated for Rinna and the resulting parameters will be applied on the rest of the catchment. The 

https://www.ntnu.no/hydrocen/dynavann
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discharge data is published by the Norwegian Water Resources and Energy Directorate (NVE). The 

gauge is located upstream of a regulated reservoir and not influenced by it. 

The area in Surna in the north is primary classified as mountainous and marsh. In the south (lower 

elevation) the SLCs are mostly forest and agriculture. SLCs are visualized in Figure 54, Appendix B.1. 

When looking at climatic parameters of Rinna (see also Figure 55, Appendix B.1), the mountainous 

regime characteristics can be seen. The mean temperature is below 0 °C between November and 

April. Discharge is dominated by snow melt beginning in April but reaching its peak in Mai and June. 

The precipitation amount is highest in autumn and winter, even so the discharge is the lowest 

during this time. 

There are three glaciers located inside the Rinna catchment. They each have an area of about 0.04-

0.05 km2 (NVE Atlas). By using the relation between area and surface suggested in Bahr et al. (2015), 

a volume of 0.0015 km3 (1,530,530 m3) of glaciated area can be assumed. The annual discharge of 

glacier would then be (assuming a constant outflow and a total melt of discharge within a year) 

0.05 m3/s. If all glaciers would melt within a month, the discharge would be 0.6 m3/s. In the month 

with the lowest discharges and mean temperatures above 0 °C (October) that would be 17 % of the 

mean discharge. Nevertheless, glaciers where not implemented in the model, because they would 

add more parameters and uncertainty and probably are not influenced that much by the 

precipitation input. 

 
Figure 14: Location, elevation, rivers, lakes and hydropower locations of the Surna catchment 
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3.2.5 Grunnåi 
The Grunnåi river is located in Telemark, Norway. The catchment has an area of about 85 km2 and 

a mean elevation of 960 m a.s.l. According to Gottschalk et al. (1979) the catchment is located in 

the inland regime. Relating to the TwinLab project (https://www.ntnu.no/hydrocen/twinlab), the 

aim is to gain a better understanding of low flow conditions and to couple hydrological, hydraulic 

and other models that are connected to a hydropower plant. 

There is one hydropower plant located in the catchment, with a small reservoir above the hydro 

tunnel. This power station is not considered in the hydrological model, because the natural state of 

the basin is going to be regarded. Two discharge stations are located upstream of the hydro power 

station. The data is provided by Skagerak Kraft AS. One of the gauges only has data before 2000 and 

was not considered in this thesis. The other gauge is the calculated inlet into the reservoir between 

2010 and 2022 and was used for the calibration. 

There is no city located in the catchment. In the lower elevated areas, the land use is mostly forest 

(32 %), in the higher elevated areas the land class is mountainous (24 %) and marsh (41 %). Although 

there are many lakes located in the basin, only the reservoir was considered as an olake. A small 

area is agriculture/city where some houses/cabins are located. But they are widespread and will 

not have a strong influence for the hydrology. 

The temperatures in the catchment are in general low with a mean temperature above 0 °C only 

between April and October. The precipitation is the lowest in winter and spring and the highest in 

autumn. Caused by snow melt, the discharge reaches a peak in Mai, followed by discharge 

dominated by rain and higher discharges in autumn and low discharges in winter because of snow 

accumulation. This is also in good agreement to the hydrological inland regime (Gottschalk et al. 

1979). A modelling challenge in this catchment are the small lakes in it. They are not considered as 

water bodies in the land use classification, but probably have a dampening effect on the discharge. 

That’s why they were included manually into the SLCs by calculating the lake area of each sub-

catchment and including them as ilakes. 

 
Figure 15: Location, elevation, rivers, lakes and hydropower locations of the Grunnåi catchment 

 

https://www.ntnu.no/hydrocen/twinlab
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3.3 Data 
This section is a summary of precipitation products in Norway. Here, Norwegian radars and radar 

correction, spatial interpolated gauge data and a numerical model-based product are described. 

Additionally, evapotranspiration, discharge data and the data availability are included. 

3.3.1 Norwegian Radars 
“To put a weather radar in a mountainous region is like pitching a tent in a snowstorm: The practical 

use is obvious and large — but so are the problems.” (Germann and Joss). This cite describes the 

difficulties when trying to measure radar data in mountainous areas like the Norwegian inland. 

Beam clutter, attenuation and beam blockage are the main error sources here. In a study from 

Abdella et al. (2012), beam blockage of radar stations in Norway was detected. The results showed 

a high amount of beam blockage in the direction of the inland of most of the radar stations. 

There are currently ten radar gauges used in Norway, most of them located at the coast (see 

Figure 16). They cover all of the land area with a radius of 240 km (Bye 2013). Radar data is 

measured with a sampling rate of 7.5 minutes (Lussana et al. 2016a), but is accumulated hourly 

before being published online. The frequency of these radars is C-Band and most of them are 

horizontal polarized. Two radar stations (Berlevåg and Hurum) are dual polarized. Gridded, hourly 

radar precipitation (in mm/h) is available since 2010, radar reflectivity with clutter and blockage 

information as well as precipitation classifications are available since 2018. 

Before being published by the Norwegian Meteorological Institute (MET), radar data is going 

through extensive quality control and transformation done by a ProRad system (Elo 2012). Each 

radar measures the reflectivity for up to 12 elevations (between 0.5 and 15 degrees), with a 

360 degrees azimuth. Each elevation is then corrected with the following filters (Elo 2012): 

• Frequency of Occurrence: determination of time dependant clutter 

• Doppler filter: determination of ground clutter (radial velocity close to zero) 

• Fast Marching Method: determination of sea clutter 

• Determination of sun flare: calculating the total variation of a line segment 

• Classification of precipitation type: using temperature and humidity data to separate snow, 

sleet and rain 

After filtering the raw data, the gaps are reconstructed (Sivasubramaniam et al. 2018). To generate 

the Surface Rainfall Intensity, the Vertical Profile of Reflectivity is identified and corrected to 

diminish the bright band effect and increase lower rainfall rates at longer ranges for stratiform and 

convective events (Elo 2012). This approach takes the vertical variability into account and refers 

radar measurements to reference level. That is important, because the height of the radar beam 

increases with range and cannot be compared to the ground truth in higher ranges (Elo 2012). 

To calculate the precipitation rate from the radar reflectivity Marshall and Palmer (1948) (Eq. 25) is 

applied, not considering the changes of the Z-R relation caused by different precipitation types (e.g. 

snow and rain). That’s why Sivasubramaniam et al. (2018) suggested to use air temperatures for 

calculating the precipitation from radar reflectivity. The temperature yields information about the 

precipitation type and creates a variable Z-R relation. This resulted in an improvement of rain 

estimation of more than 80 % compared with gauge data, with the highest improvements with 

temperatures below 10 °C. In a further study Sivasubramaniam et al. (2019) combined radar 

precipitation data with interpolated gauge precipitation. The aim of this study was to improve the 

spatiotemporal resolution of precipitation estimates. They concluded that radar data 

underestimates the precipitation compared to gauge observations, even after merging them. 

Nevertheless, this approach created better results of radar data.  



Material 

3.3 Data 

28 

In general, the amount of radar stations in Norway is not enough to create a land covering 

observation field. The reason for that are the mountains challenging the observations. That’s why 

radar data should be best used for catchments right next to the station or somewhere without any 

shielding effects (Lusanna 2022, personal communication, 10th March). An overview of radar 

location is visualized in Figure 16, technical details of each of the radar stations are summarized in 

Table 4. 

 
Figure 16: Overview over radar coverage of Norway 

 

Table 4: Summary of available weather radars in Norway, information taken from Bye (2013) 

Name 
Height-
Station 

[m] 

Height-
Antenna 

[m] 
Data since Frequency Polarization 

Rissa 605 611 01.01.2003 C-Band (5,640 GHz) Horizontal 

Andøya 433 436 01.01.2007 C-Band (5,620 GHz) Horizontal 

Berlevåg 455 474 01.10.2012 C-Band (5,640 GHz) Horizontal+Vertical 

Bømlo 95 104 01.01.2002 C-Band (5,640 GHz) Horizontal 

Hægebostad 622 631 01.01.2000 C-Band (5,640 GHz) Horizontal 

Hasvik 437 444 01.09.2008 C-Band (5,640 GHz) Horizontal 

Hurum 347 363 01.11.2010 C-Band (5,620 GHz) Horizontal+Vertical 

Røst 3 17 01.01.2004 C-Band (5,640 GHz) Horizontal 

Sømna 315 10 2014 C-Band (5,640 GHz) Horizontal 

Stad 496 508 01.10.2009 C-Band (5,640 GHz) Horizontal 
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3.3.2 Norwegian NWP 
In a cooperation between the Swedish SMHI and the Norwegian MET, called Meteorological 

Cooperation on Operational Numerical Weather Prediction (MetCoOp), the regional weather 

prediction system AROME-MetCoOp was developed for operational weather forecast in Nordic 

countries (Müller et al. 2017). This model has a resolution of 2.5 km. To adapt it to the Nordic 

region, it was calibrated with radar reflectivity data, ground-based satellite observations and gauge 

observations (Müller et al. 2017). For convective prediction, the MetCoOp Ensemble Prediction 

system (MEPS) is operated in Finland, Norway and Sweden. It is based on AROME. MEPS runs four 

times a day and has ten ensemble members. It adds more value to precipitation events in summer. 

A MEPS-Arctic version was developed as well, that covers Svalbard and the surrounding areas. 

Figure 17 shows the area covered of numerical models. 

 

 
Figure 17: Model field of MEPS-Nordic and MEPS-Arctic (Nipen 2022) 

 

3.3.3 Temperature and precipitation products published by MET 
In this chapter, available gridded meteorological datasets over Norway are described. All of them 

were published by MET and are publicly available. 

seNorge2 

SeNorge2 is the second version of spatial interpolated temperature and precipitation data. Hourly 

data is available between 2010 to 2017 and covers all of Norway in a 1 km x 1 km grid. The product 

was calculated by using weather and climate stations in a scale separation approach (Lussana et al. 

2016b). Temperature data is interpolated by first creating a pseudo background using a Bayesian 

method on a larger scale to assume effects of atmospheric dynamics and then using optimal 

interpolation with that pseudo background and more observation points on a smaller scale. 

Temperature is assumed to be at a height of 2 m. Precipitation is also calculated by using spatial 

scale separation. Here, geographical coordinates (latitude, longitude) and elevation were included 

in an optimal interpolation (Lussana et al. 2018). Observation data is not corrected from wind-

induced under-catch. 
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There is no study published about the hourly precipitation field. Nevertheless, the daily seNorge2 

product was described and evaluated in several studies. In Lussana et al. (2017) the product was 

evaluated by checking the runoff-precipitation balance, testing a snow model and using the data as 

input in an hydrological model. They concluded that the station network is too sparse to detect 

small scale precipitation events like thunderstorms. The product tends to underestimate the 

precipitation amount. Snow is especially underestimated in northern Norway, rain at the west coast 

and in the mountains (Lussana et al. 2018). Intense precipitation is more underestimated than weak 

precipitation. Since hourly precipitation is even more locally variable and there are less gauges 

available measuring hourly precipitation, these results are likely to appear as well or even more in 

the hourly product. Because of the lack of gauges and the uncertainty of hourly gridded data, the 

hourly seNorge2 product is not released anymore. 

seNorge2018 

SeNorge2018 is the newest version of the seNorge products. It was developed by MET and includes 

precipitation and temperature data from 1957 to 2017 in a daily timestep (Lussana et al. 2019b) 

which covers all of Norway in a 1 km x 1 km grid. To spatially interpolate precipitation, a climate 

model, observation data and a wind model to calculate wind-induced under catch of gauges was 

applied. For bias correction, monthly precipitation sums of gauge data are used. According to 

Lussana et al. (2019b) seNorge2018 varies highly from seNorge2, but since the precipitation 

product of seNorge2018 is not available in hourly timesteps, it could not be used in the model 

directly. 

Temperature interpolation is done by a spatial scale-separation approach, starting with larger fields 

and using predictions to adjust it and then go into a smaller scale and use local observations, 

depending on the density of gauges. A digital elevation map (DEM) is also included in the 

interpolation. Mean, maximum and minimum temperatures are calculated separately and then 

checked for physical mistakes. Having only a small amount of bias, the seNorge2018 temperature 

has the highest bias for minimum temperatures in winter (Lussana et al. 2019b). SeNorge2018 was 

used for calculating the seasonality of the catchments (because a long time series is available) as 

well as for calculating the potential evapotranspiration (see chapter 4.4). 

MEPS Nordic 

The MEPS Nordic product (referred to as NWP) is published by MET Norway. It includes hourly 

precipitation and temperature data since 09/2013 and covers all of Norway in a 2.5 km x 2.5 km 

grid. There are more parameters included like relative humidity, wind speed and direction, 

radiation, air pressure, surface albedo and cloud coverage. This product combines numerical model 

data with observations. The interpolation used for that is an Bayesian interpolation, similar to the 

one described in Uboldi et al. (2008). It combines the numerical model as the background with 

observations as the ground truth. The numerical model used as background is a deterministic 

version of MEPS Nordic. It is corrected by a scaling factor and localization procedure (Lussana et al. 

2019a). The observations used for the interpolation are classified according to their representation, 

which can vary over time (Lussana et al. 2019a). 

For the temperature station data is used as observations. To improve the gauge density, quality 

controlled personal gauges were included in that process (Nipen et al. 2020). According to Lussana 

et al. (2019a) the method created more accurate results. Observational precipitation data is a 

combination of personal and public gauge stations and post-processed radar data. According to 

Lussana, the radar data is the biggest uncertainty (Lusanna 2022, personal communication, 10th 

March). An example of the combination of model data with observations is visualized in Figure 18. 

Here, the model used as a background was a non-deterministic version of MEPS and therefore has 

an uncertainty. The figure shows the adjustment of the background to the observations. 
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Figure 18: Example of the interpolation method used for NWP: Precipitation over time at an 

example point A. On the left is the raw background (blue) and observations (black). On 
the right sides the interpolated product (red). Source: Lussana et al. 2021 

 

NWP was not yet evaluated in its final version, but in Frogner et al. (2019) MEPS-Nordic (background 

of NWP) was evaluated. They evaluated 54 precipitation events, especially small-scale heavy 

precipitation events. They compared the forecast versus observations. They conclude that MEPS 

adds value to small scale predictions, because of the uncertainty addition. Especially in summer 

when predictability is lower. Still, small scale precipitation has a limited predictability. 

Another comparable approach is described in Lussana et al. (2021) where a numerical model was 

used as the background of an optimal interpolation as well. It differs from the operational NWP 

product, because a non-deterministic MEPS version was used. That’s why the results cannot be 

directly compared to NWP. Still, the study showed that including observational data to the model 

added value over the background and improved the precipitation estimate field. 

KliNoGrid RR-Rad 

The most radar dependent product analysed in this thesis is called Norwegian Climate Gridded 

dataset (KliNoGrid) and is a combination of radar and gauge data. It was developed at MET in 2016 

to be used for snow and hydrological modelling. Radar and gauge data was combined by using an 

optimal interpolation between spatial information of radar measurements and measured 

precipitation at gauge locations. The dataset is available for hourly and daily timesteps, but known 

to have a better performance for daily timesteps caused by smaller spatial variability of daily 

precipitation as well as a denser network of gauges measuring daily precipitation (Lussana et al. 

2016a).  To calculate the rain rate from radar reflectivity Marshall and Palmer (see Eq. 25) was used 

for summer and winter. KliNoGrid showed better results for summer than for winter (Lussana et al. 

2016a), which may be caused by different relations between radar reflectivity and precipitation 

rate for snow and rain (Fujiyoshi et al. 1990). To improve the quality, only trustworthy gauges were 

included in the interpolation. Attenuation was corrected by using long-term accumulated 

precipitation fields from radar data (Lussana et al. 2016a).  

3.3.4 Discharge  
NVE operates a gauging system all over Norway measuring the discharge in rivers and lakes and 

publishes them online. Available measurements are water flow (Q), water level (W), water 

temperature (TW) and air temperature (TA). The discharge is calculated by using a rating curve 

including the measured water level (NVE 2015c). The rating curve is generated by measuring several 

discharges of the river during altering water levels. The discharge can be measured by Acoustic 

Doppler Current Profilers, tracers or flow meters (NVE 2015a). A measurement error that has to be 
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taken into account in Norway are frozen lakes or rivers, that change the water level and create 

inaccurate discharge calculations (NVE 2015b). The data is quality controlled by NVE. There are 

three different quality classes: no quality control (1), primarily quality control (2) and secondary 

quality control (3). 

Some timeseries have a long measurement period others were only installed in the last decades. 

Timesteps vary between daily measurements and 15 minutes. Table 5 gives a summary over 

available discharge stations at study sites in the given time interval from 2010 to 2020. 

 

Table 5: Summary of available discharge measurement stations in the catchments 

Catchment Name Station ID 
Measured 
Parameters 

Availability Timestep Quality 

Nausta Hovefoss 84.11.0 
Q, W, TW, 

TA 
1998-now 30 min 2 

Usma 
TrønderEnergi 

AS 
- Q 

12/2013-
2017 

1 h - 

Grunnåi Skagerak - Q 2010-2022 1 h - 

Surna Rinna 122.8.0 Q, W, TA 1969-now 1 h 2 

Gaula 

Gaula ovf. Fora 122.5.0 Q, TW 1941-2019 1d 
3 

since 
2019: 2 

Gaulfoss 122.9.0 Q, W, TA 1958-now 30 min 2 

Eggafoss 122.11.0 
Q, W, TW, 

TA 
1950-now 30 min 2 

Lillebudal bru 122.14.0 Q, W, TA 1963-now 

since 
1985: 1 h 

since 
2007: 

30 min 

2 

Gaua 122.16.0 Q, W, TW 1969-now 
since 

1995: 1 h 
2 

Hugdal bru 122.17.0 Q, W, TA 1972-now 
since 
1995: 

30 min 
2 

Killingdal 122.24.0 Q, W 1987-2019 1d 
3  

since 
2019: 2 

 

3.3.5 Evapotranspiration 
As an independent observation to compare modelling results, MOD16 evapotranspiration was 

applied. MOD16 data is published by the Earth Observing System Data and Information System 

(EOSDIS). PET and AET are calculated using the equations established by Monteith (1965). The 

product combines Moderate Resolution Image Spectroradiometer (MODIS) data (land cover, leaf 

area index and albedo) with daily meteorological data from the Global Modelling and Assimilation 

Office (GMAO) (Mu et al. 2011). The dataset covers most of the vegetated area of the earth and is 

available with an eight-day timestep since 2000 with a resolution of 1 km. Uncertainties of MOD16 

can be caused by uncertainties in the satellite images and meteorological data, measurement errors 

on site, differences of height between measurement and actual land surface and limitation in the 

calculation process of MOD16, because not every detail of physical processes can be taken into 

account (Anwar 2015). 
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Huang et al. (2019) compared the potential evapotranspiration of 42 stations in Norway with 

MOD16. They found out that MOD16 tends to overestimate potential evapotranspiration. A study 

from Anwar (2015), that compared MOD16 data with other evapotranspiration products in Peru 

also concluded that MOD16 tends to assume higher AET and PET values than other products. 

Downloading the open-source data is possible using an online-tool, that extracts data by using a 

geodata file of the desired area for a specific time period. The output is a netcdf4 file that includes 

the spatial variability of AET and PET.  

3.3.6 Data availability 
Because this study used data from different sources, the available time series are not similar for all 

of them. The most important factor for the analysis is the available interval of meteorological 

datasets. SeNorge2 is available between 2010 and 2017. NWP between 09/2013 and 2022. To avoid 

accumulated snow at the beginning of the calibration or validation period, a hydrological year was 

defined to start in September. The two datasets overlap between 09/2013 and 2017. To have an 

initial period of one year (e.g. to fill soil water storages), the compared time slot was defined 

between 09/2014 and 09/2016. To get the best possible results in this interval, calibration was done 

at that time. The calibration period was chosen to be three years, validation two years. This leads 

to the calibration of seNorge2 being between 09/2013 and 09/2016 and NWP between 09/2014 

and 09/2017. 

In most of the catchments, discharge timeseries are available between 2010 to 2022. An exception 

is in Usma, where discharge data is only available between 12/2013 and 2017. Because of that, the 

hydrological model in Usma was not validated. Figure 19 shows a summary of the available time 

periods. Hourly temperature data is not available for the full time period as well. That’s why the 

temperature is also a different input data. 

In Table 17, Appendix B.2 the sources of data or information used in this thesis are summarized. 

Meteorological data was downloaded from a server of MET. Discharge data, as well as geodata of 

rivers, lakes and observation stations are mainly from NVE. Previous work done for HYPE in Norway 

is from Schönfelder (2017) and Schönfelder and Baclet (2022). 

 

 
Figure 19: Data availability periods of the different observation products 
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4 Methods 
This study was divided into two parts. First, the datasets were analysed and compared in general. 

For that, the annual precipitation sum was calculated and visualized over each catchment. To 

compare the datasets with each other, the Pearson and Spearman correlation of temperature and 

precipitation was calculated. Finally, a weather station owned by TrønderEnergi AS, which was not 

included in the calculation of the products, was compared with the grid point of the datasets to test 

their correlation. The second step of this study was modelling five catchments with the datasets 

using the HYPE model. For that, a calibration method was developed first. Each catchment was then 

calibrated with each dataset one time with precipitation correction and one time without. The 

results were analysed, and in a last step a sensitivity analysis was done for some of the catchments. 

4.1 General evaluation of the precipitation and temperature products 
In the first step of this analysis, precipitation products were compared with each other and one 

precipitation gauge. For that, annual precipitation sums, correlation between datasets and 

between a weather station was calculated. 

In the first step, annual precipitation sums were calculated for seNorge2, NWP, radar precipitation 

and KliNoGridRad. The data is available as netcdf4 files on a download server and can be read 

directly using Python or R. A script was developed for reading netcdf4 files and summing up the 

precipitation for a specific time period. The precipitation sum was then again written into a netcdf4 

file that could be visualised and analysed in GIS. The time period was chosen annual from 

September to September, because it was assumed that there will be no snow at the beginning of 

the period. The annual precipitation sum was visualized for 2014 (09/2014-09/2015) and 2015 

(09/2015-09/2016), because this time period was also used for the comparison of the model results. 

SeNorge2 and NWP were further compared with each other. This evaluation provides information 

about the differences of the datasets and was further used to decide whether temperature data is 

comparable enough, so that it will not have a lot of influence on the model results, since it was not 

possible to use only one temperature product because of the different time periods (see chapter 

3.3.4). For that reason, the Spearman correlation between seNorge2 and NWP was compared for 

each sub-catchment and lumped catchments. To create lumped temperature/precipitation data pt 

the area Ai of each sub-catchment was multiplied with the temperature/precipitation pt,I per hour. 

This sum was then divided by the area of the whole catchment. 

 𝑝𝑡 =
∑ 𝑝𝑡,𝑖𝐴𝑖
𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

 Eq. 26 

To further analyse the influence of snow, mixed precipitation and rain, the datasets were divided 

into temperatures -5 °C, above 5 °C and between those temperatures. For that, NWP temperature 

was the condition, creating a bias towards seNorge2 (especially the temperature correlation). 

Pearson correlation was considered as well, but Spearman was used at the end, because it is less 

effected by outliers.  

The datasets were then compared with one ground observation. Publicly available gauges could not 

be used for that, because they are already included in the products. For that reason, a weather 

station maintained by TrønderEnergi AS was used as the ground truth. Temperature and 

precipitation data between 2014 and 2017 was obtained for that. The closest grid cell of the 

datasets was extracted out of the netcdf4 files. This was done for temperature and precipitation of 

seNorge2 and NWP. These timeseries were then compared to the station data by scattering them 

and calculating the correlation of seNorge2 and NWP. The bias was analysed by calculating the 

annual precipitation sum, mean temperature and divided in summer and winter. 
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Because weather station data was only available at one location, another data source was applied. 

According to Eq. 1, discharge data is the amount of precipitation minus evapotranspiration losses. 

This is only true when assuming there are no storage changes over a specific time interval. By 

assuming that there are no storage changes in the catchment from September to September of 

each year (because snow is already melted then), a mass balance was calculated for each year and 

each catchment. For that, discharge, evaporation and precipitation were calculated as volume (in 

mm, depending on the area of the catchment). AET is dependent on the potential 

evapotranspiration and the available water amount in the catchment. Since that information is 

difficult to estimate, AET from MOD16 was applied (see also chapter 4.2.4). The precipitation was 

than plotted against the sum of discharge and evapotranspiration. Assuming all observations are 

the truth and there are no storage changes over the time interval, these two values should be 

similar. The differences between precipitation and discharge with evapotranspiration can be called 

errors of the water balance of the catchment. These differences were compared for each basin. 

An inverse modelling approach (chapter 2.1.3) was applied as well, to compare the precipitation 

calculated from discharge data and the precipitation products. This could not be done for snow 

events, because the simple model approach developed by Kirchner (2009) does not take snow 

accumulation and snow melt into consideration. First, the precipitation sum of the model and the 

datasets between June and October were compared. For that, a sensitivity curve was fitted for each 

catchment and the precipitation calculated from the resulting parameters. 

4.2 Setting up and calibrating HYPE for the different catchments and input 

datasets 
In this part, the catchments were calibrated with different input datasets. At first, the catchments 

were set up for HYPE by adjusting the sub-catchments and defining optimization boundaries. 

Afterwards, PET was calculated in an extra step because it was found that HYPE tends to 

compensate the water balance equation within the model by varying evapotranspiration rates. To 

create stable and reliable results, different calibration methods were tested and analysed in the 

next step. Here, the number of soil layers and their thickness was variated. Multi-gauge and low 

flow calibrations were further analysed. At the end of this section, the modelling process is 

summarized by listing the steps done for each study side. 

4.2.1 Determination of sub-catchments and SLCs 
The delineation and boundaries of sub-catchments were first implemented by Schönfelder (2017) 

and were further developed in the following years (Schönfelder and Baclet 2022). Initially, 

Schönfelder (2017) used a tool called WHIST (developed by SMHI) that calculates sub-catchments 

by using a DEM, flow accumulation and flow direction. In that process, forced points can be added 

to the calculation, which will result in sub-catchments with outlet points similar to the forcing point. 

That way, discharge gauges can be placed directly at the outlet point of a catchment to calibrate 

the model. In that process, also geographical data (e.g. mean elevation, mean slope) was calculated. 

Another output calculated in that process is the main water flow path. Schönfelder (2017) also 

included lake information into the determination of sub-catchments. For that, lakes were divided 

by area and lakes larger than 5 km2 were considered as olakes, lakes smaller 5 km2 as ilakes. In 

Schönfelder and Baclet (2022) a combination of Python code and Whitebox GAT was used for 

automatic routing. The SLCs are, in contrast to first model setups from Schönfelder (2017), based 

on the Coordination  of  information  on  the  environment (CORINE) Land Cover (CLC) dataset which 

is published by the European Environment Agency (EEA 1993). This dataset consists of 44 classes, 

that were classified by using satellite images (Büttner et al. 2017). These classes were then 
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reclassified into five classes (water, marsh, mountain, forest, urban/agriculture) by Schönfelder and 

Baclet (2022).  

Most of the available geographic data from previous work was used directly in this thesis. In some 

cases, sub-catchments had to be adjusted, e.g. because of separated local rivers, changing an ilake 

into an olake or discharge stations not located at the outlet of the catchment. In these cases, 

geographical data had to be recalculated. Figure 20 shows an example of manual changes done in 

Nausta. In this case one olake (sub-catchment 6) was added, because of two inflow points into the 

lake. Two sub-basins were divided to include a discharge measurement station (sub-basin 3 and 4) 

and to include inflows into the olake (sub-basin 5 and 9). Adjustments were done in Usma, Grunnåi 

and Surna (Rinna) as well. 

 

 
Figure 20: Nausta sub-catchments before manual changes (a) and after (b). 

 

4.2.2 Parameter adjustment 
Schönfelder and Baclet (2022) set up a set of parameters and parameter boundaries for HYPE for a 

daily timestep. When trying to change the model into an hourly timestep, the model showed a bad 

suitability. This was mainly caused by high evapotranspiration, that dried out the catchment causing 

basically no discharges in summer. The reason for the high evapotranspiration amount was the 

evapotranspiration parameter (cevp). Since this parameter usually is a constant for daily 

evapotranspiration it could not be adapted directly into the hourly model and was decreased (from 

0.01-1 to 0-0.1). The same procedure was done with the snowmelt parameter cmelt (from 1-5 to 0-

0.5). 

According to Pers (2022b) all parameters with a unit of ts-1 are affected by changing the timestep. 

Additionally, macrinf, surfmen and deepmem are affected by changing the timestep. These 

parameters are less sensitive within the model and were not noted as an influence in the modelling 
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results at the beginning. The parameters were therefore not changed for the calibration of the 

catchments. This needs to be considered when analysing the results. 

The number of parameters, that will be calibrated can be chosen by the user, as well as the 

parameter space. These calibrated parameters are summarized in Appendix A.2, Table 17. Most of 

them are similar to the ones used in Schönfelder and Baclet (2022). Some were changed so that the 

number of steps between the boundaries is between 100 and 150. The table also includes 

boundaries of each parameter and the number of steps between them.  

4.2.3 Precipitation and temperature data extraction and interpolation 
As mentioned in chapter 4.1 precipitation and temperature datasets are available publicly at the 

download server of MET. There, they are saved in nedcdf4 files that contain georeferenced gridded 

values. A R script developed by Schönfelder (2017) was applied to extract these values from the 

files for each sub-catchment by using a geodata file of the basin. This script was edited to open and 

read netcdf4 files directly online without downloading them first. This was done to save computer 

storage, since hourly datasets can take a lot of space. Another small change was done for the 

creating of the output text file. Originally, the script used to read all netcdf4 files first, before 

creating an output file. When working online, there is always a chance of losing internet connection 

or a failing server. That’s why in the edited version, the results were written into a text file for each 

timestep. The scripts were applied for extracting seNorge2, NWP and seNorge2018 temperature 

and precipitation data. 

The NWP product has a data gap between 2019-03-02 20:00 and 2019-03-04 03:00. Precipitation 

data between this time was set to zero, temperature was interpolated. When a sub-catchment was 

too small to fit into an index cell (this was especially the case with NWP, because it has a bigger grid 

than the other products) the index was defined manually to fit the closest grid cell of the sub-basin. 

For two of the catchments, weather station data was included into the analysis. In Usma, a weather 

station located 30 km away from the catchment was evaluated to test whether it would be suitable 

for a hydrological model. For that, the measured precipitation of the weather station was applied 

uncorrected for each sub-catchment. Temperature data was not taken from the weather station, 

because it is more dependent on the elevation than precipitation. For that reason, NWP 

temperature data was mixed with weather station precipitation data. 

In Grunnåi, daily precipitation data from MET (published at frost.met.no) was applied to analyse in 

the water balance. There are five gauges located around Grunnåi. To generate precipitation data 

for each sub-catchment (hN), an Inverse Distance Weighting was applied. For that, the distance (di) 

between each gauge (hN,i) to the centroid of each sub-catchment was calculated, and the weight of 

each gauge calculated according to Eq. 22. Not every gauge measured precipitation at each 

timestep. For that reason, the interpolation was done for each timestep, so that gauges with data 

gaps could be excluded from the calculation during that time. Figure 21 visualizes the location of 

the gauges and the sub-catchment centroids. 
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Figure 21: Visualization of Inverse-Distance-Weighting in Grunnåi with daily weather station data 

 

4.2.4 Calculating potential evapotranspiration as an independent input in HYPE 
Evapotranspiration is not a necessary input in HYPE. There are even different methods to calculate 

PET available as model options (e.g. Priestly-Taylor, FAO Penman-Monteith) (SMHI 2021). However, 

these methods can only be applied for daily timesteps, not for hourly data. The only available 

method for hourly timesteps is the default model. This method assumes, that PET (epot) is 

dependent on air temperature, with no evaporation below a threshold value (ttmp). Furthermore, 

PET is dependent on land use which is included with the rate parameter (cevp). To also account for 

seasonal changes, a parameter cseason is added to the equation. If necessary, a regional correction 

factor (cevpcorr) can be added. 

 𝑒𝑝𝑜𝑡 = (𝑐𝑒𝑣𝑝 × 𝑐𝑠𝑒𝑎𝑠𝑜𝑛) × (𝑇 − 𝑡𝑡𝑚𝑝) × (1 + 𝑐𝑒𝑣𝑝𝑐𝑜𝑟𝑟) Eq. 27 

Cevp and ttmp can be calibrated in an automatic calibration. Preliminary results showed that PET 

was not similar for each calibration. This may be caused by low sensitivity of the model towards 

changes of evapotranspiration. Additionally, a diurnal cycle is not considered, which means that on 

warm nights, the evapotranspiration was still high, although there was no radiation through sun 

available. For these reasons and to get a more physically and not calibration-based PET, it was 

calculated separately and added to HYPE as additional input data. For that purpose, the method of 

Hargreaves and Samani (1985) was applied. This is a simple approach using minimum (Tmin) and 

maximum (Tmax) temperature of a day to calculate the daily PET.  

 𝑒𝑝𝑜𝑡 = 0.0023 × 𝑅𝐴 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5 × (

(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)

2
+ 17.8) Eq. 28 

Daily extra-terrestrial radiation (RA) can be calculated according to FAO guidelines (Allan et al. 1998) 

by only using the latitude (lat) of the area and the day of the year (J). These two values are necessary 

to calculate latitude (φ) in rad, solar declination (δ) and sunset hour angle (ωs). 
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𝑅𝐴 =
24

𝜋
× 4.92 × (𝜔𝑠 × 𝑠𝑖𝑛(𝜑) + 𝑐𝑜𝑠(𝜑) × 𝑐𝑜𝑠(𝛿) × 𝑠𝑖𝑛(𝜔𝑠)) 

 

Eq. 29 

with            𝜑 =
𝜋

180
× ⁡𝑙𝑎𝑡 Eq. 30 

 

                    𝛿 = 0.409 × 𝑠𝑖𝑛 (
2𝜋

365
× 𝐽 − 1.39)  Eq. 31 

 

                  𝜔𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠(−𝑡𝑎𝑛(𝜑) × 𝑡𝑎𝑛(𝛿)) Eq. 32 

According to studies from Hargreaves et al. (2003) and Zarei et al. (2015), the Hargreaves method 

shows acceptable results compared to Penman-Monteith, with less data input necessary.  

In this thesis, evapotranspiration was calculated by using seNorge2018 daily minimum and 

maximum temperature data, because it was the most recent product that is available for the whole 

time period of this study. To transform daily evapotranspiration into hourly information, a 

weighting function was used, having the highest values in the middle of the day and no PET at night. 

In Figure 22 this weighting function is visualized for one day. The change of the diurnal cycle during 

the season was considered because the day and night time varies strongly between summer and 

winter in Norway. However, evapotranspiration was not considered to be a strong influence of the 

timing of the model and is more important for the general water balance instead of hourly values. 

That is why only one weighting function was applied for summer- and wintertime. 

 
Figure 22: Weighting function used for calculating the hourly potential evapotranspiration 

 

PET calculated with Hargreaves, MOD16 PET and AET data were compared. This was done by 

plotting a timeseries of the evapotranspiration products. Additionally, the annual actual 

evapotranspiration amount from MOD16 and modelled by HYPE was evaluated. 
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4.2.5 Calibration 
The next step for setting up HYPE was to develop and choose an automatic calibration method, that 

is able to create reproduceable results. Two calibration methods provided by HYPE were tested and 

compared. In the next step, soil thickness and catchment characteristics were varied and calibrated. 

Another approach was evaluated, where the calibration was divided into different processes. For 

calibrating catchments with more than one gauge, a method was tested and chosen and as a last 

step, calibration methods for improving low flow conditions were tested. 

4.2.5.1 Calibration methods 
HYPE provides nine different automatic calibration methods. They are based on Monte Carlo, 

Differential Evolution Markov Chain, Brent, the method of steepest decent and quasi-Newton 

(SMHI 2021). In this thesis, two of these methods, DEMC and a progressive Monte Carlo simulation 

were tested, because these two methods showed a high efficiency with good model performances 

in Schönfelder and Baclet (2022), where all of these calibration methods were evaluated. The KGE 

was applied as objective function for the evaluation. 

To compare the calibration methods, the number of simulations was varied and the performance 

of each run compared. A calibration was then repeated to test whether the same performance was 

achieved again. To also test the efficiency of the methods, the wall time (time, that the calibration 

takes) was measured and compared. All of these tests were only done in one catchment (Nausta) 

and with one dataset (seNorge2), assuming that they will not vary for other areas. Different 

catchment calibrations were also tested by Saldaña Espinoza (2022). Each catchment showed 

similar behaviour towards the calibration method. More simulations resulted in better KGEs as well 

as a more similar performance when repeating the calibration. 

Regarding DEMC, an error was found in the HYPE-forum (Pers 2022a) with the explanation that the 

optimal dataset of this calibration is not saved in respar.txt (file that saves the resulting 

optimal parameter values (SMHI 2021)), but instead has to be extracted from bestsims.txt 

(saves the parameters of a number of best simulations (SMHI 2021)). Since this was found out only 

late in the study, this knowledge could not be included into decision making for the calibration 

strategy. After the discovery, further tests with DEMC were done anyways. 

4.2.5.2 Stepwise calibration 
Additionally to a one-time calibration, a stepwise calibration was tested. This method is also 

described in Arheimer and Lindström (2013) where HYPE was calibrated for Sweden. The main idea 

is to take one process at a time and calibrate the dependent parameters in each step. In this study, 

they tried to follow the water flow path from upstream to downstream. A stepwise approach was 

also done when setting up the World-Wide-HYPE model (Arheimer et al. 2020). Interesting here 

was that processes were partly just calibrated in areas where they are relevant. They also divided 

the catchments into different climate zones. There, eleven processes were defined and calibrated 

iteratively. Saldaña Espinoza (2022) used a stepwise approach for calibrating different catchments 

and improving lake outflow calibration. The results showed an improved KGE when doing a 

stepwise calibration. In this approach, the water level of lakes was calibrated in one of the steps 

additionally. In this study, the step wise calibration was tested on one of the catchments at first and 

showed promising results, because of an increase of the model performance after each step and a 

better resulting KGE than with any other calibration method.  

To avoid overcompensating errors with different processes, the initial calibration (with all 

parameters) was set up to already have a high number of simulations, to provide stable results for 

each parameter set. That way, the stepwise calibration should just lead to an improvement of 
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parameter sets (fine tuning) instead of changing the model dynamic of the whole catchment. In the 

final version, the following processes and their parameters were calibrated: 

• Soil:   wcfc1, wcfc2, wcfc3, wcwp1, wcwp2, wcwp3, wcep1, wcep2,  

wcep3, mperc1, mperc2, sfrost, rrcs1, rrcs2, rrcs3, srrate, macrate, mactrinf, 

mactrsm, frost, srrcs, surfmem, ttrig, treda, tredb, depthrel 

• Winter:  ttpd, ttpi, deepmen, cmlt, ttmp, fscmax, fsck1, fsceff, fscdistmax, fscdist0,  

fscdist1, sdnsnew, snowdensdt, fsclim, fsckexp (pcusnow) 

• Divers:  lp, epotdist, cevp, rivvel, damp,deadl, deadm, (pcurain) 

• Ilakes:  icatch 

• Olakes:  gratk, gratp, grata 

For an explanation of parameters see Appendix A.2. pcurain and pcusnow were only calibrated 

when precipitation correction was applied. The stepwise approach was done iteratively, meaning 

that the calibration of the processes was repeated another time. When the KGE decreases during 

one step of the calibration, the resulting parameters are not applied into the next step. 

The ilake calibration was done in another way than the rest of the processes. Since the parameter 

icatch can be defined global (same value for each sub-catchment) or regional (value defined in 

GeoData.txt and different in each sub-catchment), icatch was first calibrated for all catchments 

(in the initial calibration) and afterwards changed directly in the GeoData.txt file. For that, a 

Python script was developed that used a Monte Carlo approach: First the text file is read, the 

column “icatch” for each sub-catchment is changed with a random number between defined 

boundaries and then HYPE is executed. The results are then read and saved and then another set 

of parameters is calculated randomly again. These boundaries were set for each catchment 

manually. 

One exception was Gaula with 250 sub-catchments. Because a manually set of boundaries would 

be too much effort, an approach suggested by Schönfelder (2017) was applied. Here, the size of the 

lake (Alake), the distance between the lake and the sub-catchment outlet (doutlet) and to the center 

(dcenter) are set into relation with the sub-catchment area (Abasin). Then, two parameters (m,u) are 

varied between 0 and 1 and icatch calculated. This icatch is than calibrated by varying m and u. 

𝑖𝑐𝑎𝑡𝑐ℎ = (𝑢 ×
√𝐴𝑏𝑎𝑠𝑖𝑛
𝑑𝑜𝑢𝑡𝑙𝑒𝑡

+𝑚 ×
√𝐴𝑏𝑎𝑠𝑖𝑛
𝑑𝑐𝑒𝑛𝑡𝑒𝑟

) ×
𝐴𝑙𝑎𝑘𝑒
𝐴𝑏𝑎𝑠𝑖𝑛

 

 

Eq. 33 

For sub-basins with more than one lake, the one with the highest drainage area was chosen. Lakes 

smaller than 0.05 km2 were not considered. For these lakes, a random value between 0 and 0.05 

was used as icatch, olakes have a value of 1. 
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The following algorithm was used for the stepwise calibration: 

1) Initial calibration with all parameters 

Calibration method: Progressive Monte Carlo 

num_bpmax:  5 

num_bp:  5000 

num_ens:  5 

2) Calibrate soil processes  

Calibration method: Progressive Monte Carlo 

num_bpmax:  10 

num_bp:  200 

num_ens:  5 

3) Calibrate snow parameters 

Calibration method: Progressive Monte Carlo 

num_bpmax:  10 

num_bp:  200 

num_ens:  5 

4) Calibrate all other parameters  

Calibration method: Progressive Monte Carlo 

num_bpmax:  10 

num_bp:  200 

num_ens:  5 

 

5) Calibrate ilakes  

Calibration method: Monte Carlo 

n:   500 

6) Calibrate olakes  

Calibration method: Progressive Monte Carlo 

num_bpmax:  10 

num_bp:  200 

num_ens:  5 

7) Repeat steps 2-6 

4.2.5.3 Handling catchments with multiple discharge gauges 
As seen in Figure 12, there are seven discharge stations available in Gaula, that have available time 

series in the time period of this study. Two of them are only measured in a daily timestep (Gaula 

ovf. Fora and Killingdal). To develop a calibration strategy, different variations of station-

calibrations were tested. 

First of all, the calibration was done using the median KGE of all gauges (median all stations). For 

that every station was calibrated and the objective function was to maximizes the median KGE of 

all stations. The same procedure was repeated with the average KGE (average all stations). After 

that, specific stations were calibrated together using the average KGE as objective function, and the 

parameter sets were then applied to the whole catchment. Finally, every station was calibrated by 

itself. When calibrating the whole catchment, the number of simulations was 2000, when the gauge 

had a small upper catchment, the calibration was done with a higher number of simulations (25,000 

simulations, according to the initial calibration of the stepwise approach). This comparison was 

done using seNorge2. The results were than compared and analysed to decide which strategy will 

be used for the final calibration of Gaula. 
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4.2.5.4 Low flow calibration 
Although the right forecast of flood discharges is useful in a model (for example for flood forecasts 

or risk assessment), low flows are also necessary to regard. For example, fish populations depend 

on a minimum water level to breed and live in a river. Artificial decrease of water levels in rivers 

may have strong impacts on local fish population. It is known, that low flows tend to be 

underestimated in the Norwegian HYPE model (Schönfelder (2019), Schönfelder and Baclet (2022)), 

different methods to improve their performance were tested. The question of interest was whether 

precipitation products are responsible for this behaviour. 

Different approaches to improve the model performance were applied. First discharge data was 

extracted to only include low flows. They were defined as the 20 % lowest flows during the 

measurement period. These values were then applied for the calibration. Another approach was 

using different objective functions. Here, the relative bias and root mean squared error were 

tested. To decrease the number of calibrated values, parameters with higher sensitivities towards 

low flows were detected by changing parameters one at a time and looking at the change of the 

KGE. For these parameters, new boundaries were defined, that created better low flow 

performances. This evaluation was done for one catchment using both datasets. The results of the 

analysis were then transferred to another catchment to validate the results. 

4.2.5.5 Soil layer and soil thickness calibration 
Since soil layer thickness cannot be included in an automatic calibration, a pre-analysis of different 

soil layer thicknesses was done. For that, the variables stream-depth, soil-layers and depth 1-3 in 

GeoClass.txt were changed manually, and the influence of layers was analysed. The 

progressive Monte-Carlo method with 200 simulations per stage and 10 stages was used for that. 

The reason for that is the lower computing effort when using a smaller number of simulations, but 

still a qualitative result could be created. After calibrating different soil layer thicknesses, the results 

with the best KGE were considered to be the right soil thickness. The stream-depth is another 

parameter that can be changed manually. This parameter describes the height of the ground water 

participating in the flow and standing water underneath. To test this dependence, the best results 

of the soil layer calibrations were afterwards calibrated with varying stream depths. The results of 

these calibrations can be found in chapter 5.2.3. 
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4.2.6 Summary of modelling process 
This section is a summary of the steps that were done to create and calibrate the model of each 

catchment. The used scripts are included in the digital appendix. A description of the programmes 

used is in Appendix I. The following steps were done for each catchment: 

1) Delineation: 

All of the catchments already had a delineation with sub-basins. Still, they had to be altered, 

when a gauge station was not at the outlet, an olake was included or to increase the degree 

of detail. These small adjustments were made with WHIST. 

2) Generate input data: 

Gridded precipitation and temperature data is saved in netcdf4 files. These files contain 

matrixes of meteorological values with dimensions of time, latitude and longitude. Using a 

geodata file to extract data with a R script. The netcdf4 files are saved on a download server 

and were extracted online without a previous download. 

3) Generate model set up files: 

For a functioning HYPE model, a directory with specific files has to be created. The HYPE 

model set up is explained in Appendix A.1. Most of the files are similar in each catchment 

or have to be readjusted in a small manner. GeoData.txt had to be recalculated when 

the delineation was changed using QGIS (slope, mean elevation and SLCs). 

4) Soil layer calibration: 

Before starting the actual calibration, each catchment was modelled with a different 

number of soil layers and different thicknesses.  

5) Calibration: 

After finishing step 1-4, the calibration process was started. Each catchment was calibrated 

according to the stepwise calibration described in section 4.5.2. This method combined the 

automatic calibration from HYPE with a Python script that processed the stepwise 

calibration. Each catchment was calibrated at least four times: two times with the seNorge2 

dataset (with and without precipitation correction) and two times with NWP (with and 

without precipitation correction). In two catchments (Usma and Grunnåi) two further 

calibrations were done with the weather station data as precipitation input. Because of the 

size of the Gaula catchment, the initial calibration of Gaula was decreased to 10,000 

simulations and the stepwise calibration was not iterated a second time.  

6) Validation 

After calibration, the resulting parameter sets were validated for a different time period 

(see Figure 19) to check whether the results are reliable. Because discharge data for Usma 

was not available for a long time period, it was not validated. 

4.3 Result analysis 
After setting up and calibrating the models, the results were compared and analysed. At first, model 

performances of each catchment and different precipitation methods from calibration and 

validation were compared to find out which product created the best model performance. Then, 

performances of the model in summer and winter, low flow behaviour and the correlation between 

simulated and observed discharge were compared. The model results of each catchment were then 

evaluated by visualizing the discharge range using different products and cumulative volume sums. 

In a next step, water balances of each catchment were created, comparing the precipitation volume 

with discharge and evapotranspiration. In that process, the evapotranspiration amount modelled 

by HYPE was compared with MOD16 data. Additionally, seasonal behaviour of the water balance 

was analysed. To detect whether HYPE creates unnatural water accumulations or losses, the water 
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storages were checked as well. For that, the model setting printwaterbal was applied. With that, 

the model creates additional output files containing the water storage amount of each catchment 

and for each timestep. This information was used to analyse the water storage changes and 

visualize possible storage accumulations or losses. 

At last, specific events in each catchment were chosen and analysed according to precipitation data 

and modelling results. For that, events were identified that showed mismatching behaviour of the 

model compared to the discharge data. These events were then visualized spatially over time and 

the simulated discharge analysed. For these events, an inverse modelling approach (Kirchner 2009) 

was applied to test whether they are comparable to the rain rate suggested by the datasets. 

4.4 Sensitivity analysis 
In the last step of this study, the model accuracy and correctness was tested by doing a sensitivity 

analysis. Three different approaches were used for that. First, GLUE was applied for the calibration 

results, the calibration and validation period were switched and in the last step, the physicality of 

parameters was analysed and evaluated. 

GLUE (see chapter 2.1.2) was applied for two catchments. To create different calibration results 

and parameter spaces, the original approach was adapted, because the calibration method was 

decided to be progressive Monte-Carlo instead of a general Monte-Carlo. To get a sufficiently large 

enough number of different best-parameter results, the number of ensembles could have been 

increased, but that would have led to a change in the calibration method. That is why it was decided 

to create different results by repeating the calibration a certain amount of times. In 

(Sivasubramaniam et al. 2020), the parameter space of the best 50 results were analysed, here only 

the best 20. This led to a repetition of the calibration four times with five outputs per run. Instead 

of the stepwise calibration, only the initial calibration was used for this comparison. GLUE was 

applied for only two catchments, Grunnåi and Nausta. First, the parameter space was visualized by 

normalizing (ni) the values (pi) according to their boundary values (pmin and pmax) of the optimization.  

 𝑛𝑖 ⁡= ⁡
𝑝𝑖 − 𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛
 Eq. 34 

This can give information about whether the chosen boundaries are suitable or whether the 

parameters converge against one of the boundaries. Each calibration result was further visualized 

individually. Here, the best five results of each of the four calibrations were divided by colours. That 

way, differences between each calibration could be found more easily.  

Another step to test the accuracy and suitability of the model was to switch the calibration and 

validation period and evaluate the performance change. This means that for seNorge2, that is 

calibrated between 2013/09 and 2016/09 (time period 1) and validated between 2011/09 and 

2013/09 (time period 2), the times were switched (calibration in time period 2 and vice versa). The 

same was done with NWP, which is originally calibrated between 2014/09 and 2017/09 (time period 

1) and validated between 2017/09 and 2019/09 (time period 2). 

The last step was to compare physical parameters. For that, pcurain and pcusnow were compared 

in each catchment and with each dataset. Additionally, the river velocity (rivvel) was compared in 

value and was also set into comparison with the slope and elevation of a catchment. To see whether 

the SLCs have a realistic behaviour, land use dependent parameters cmelt and cevp were analysed 

as well.  
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5 Results 
In this chapter, the results of this study will be provided. At first, the precipitation products were 

generally compared. Afterwards, different calibration methods were evaluated. After running the 

model, the results were analysed and compared, as well as water balances and storage changes. 

Additionally, selected events were analysed. At last, a sensitivity analysis of the model was done 

using GLUE, switching the calibration period and evaluating specific parameters. 

5.1 Comparison of the datasets 
In the following chapter, the results of comparing the two datasets are described. To get a general 

overview over the spatial distribution of precipitation accumulated annual precipitation sums of 

the datasets were calculated. To compare the temperature datasets, the measured temperature of 

each catchment was compared by using a linear regression and correlation. Temperature and 

precipitation were compared with a weather station owned by a hydro power company as the 

ground truth. At last, the precipitation-runoff relation of each catchment was compared. 

5.1.1 Spatial variability of precipitation 
In Figure 23 the annual precipitation sums of 2014 and 2015 over the Gaula catchment are 

visualized. Notice that the year was defined from September to September. The same figures of 

other catchments can be found in appendix C.1. 

NWP precipitation sums of Gaula varie between 788-1658 mm/a with higher precipitation in the 

higher elevated areas. SeNorge2 varies between 477-1208 mm/a with the highest precipitation in 

the lower part of the basin. Radar data assumes the annual precipitation between 225-904 mm/a 

with higher precipitation in the lower basin as well. In Usma, the annual precipitation according to 

NWP varies between 1,093-1,421 mm/a with higher precipitation in the west side of the basin. 

SeNorge2 is more homogeneous and varies between 702-772 mm/a. Radar data is lower than the 

other products with 440-619 mm/a. It is also mostly homogeneous over the catchment. The NWP 

product over Nausta varies between 2,263-4,205 mm/a. The highest precipitation is located at the 

higher elevated sub-catchments. SeNorge2 however has the highest precipitation in the lower 

elevated ones, varying between 2,066-3,723 mm/a. Radar data has a beam blockage in the upper 

catchment. It varies between 180-795 mm/a. Precipitation in Grunnåi varies between 1,335-2,110 

mm/a (NWP) and 1,167-2,016 mm/a (SeNorge2). Both datasets have the highest precipitation in 

the upper catchment, located in the north of the basin. Radar data is again lower between 588-807 

mm/a. The highest precipitation is located in the south-east of the catchment. In Surna, 

precipitation varies between 1,170-2,800 mm/a (NWP) or 750-1,500 mm/a (seNorge2). The radar 

measures precipitation of about 422-952 mm/a. Both datasets have the highest precipitation in the 

south-west of the catchment. 
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Figure 23: Annual Precipitation sum of September 2014 to September 2015 (upper figure) and 

September 2015 to September 2016 (lower figure) over Gaula 
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An annual precipitation sum was further calculated for the KliNoGrid dataset (combination of radar 

and gauge data). Figure 24 shows the precipitation sum of KliNoGrid over Norway and Gaula.  

 
Figure 24: KliNoGrid precipitation sum over Norway (left) and Gaula (right) of 2015. The red dots 

are locations of radar stations. 

5.1.2 Spearman correlation  
As a next step, the Spearman correlation was calculated. Lumped temperature and precipitation 

was calculated with seNorge2 and NWP. Afterwards, the Spearman correlation of the overlapping 

time period (09/2013 to 2017) was calculated. The results can be found in Table 6. To consider the 

spatial variability of the datasets, the Spearman correlation was further calculated for each sub-

catchment of the basins. These results were then compared with the mean elevation of the sub-

catchments. First, all precipitation types were considered at once (see Figure 62, Appendix C.2). To 

get more information about the influence of snow, mixed precipitation and rain, the observations 

were divided by temperature. The comparison is visualized in Figure 25.  

 

Table 6: Spearman correlation of lumped catchment temperature and hourly and daily  
precipitation 

 
Spearman 

Correlation of 
Temperature 

Spearman 
Correlation of 

Precipitation (hourly) 

Spearman 
Correlation of 

Precipitation (daily) 

Gaula 0.97 0.67 0.89 

Nausta 0.95 0.61 0.81 

Usma 0.94 0.54 0.80 

Surna 0.99 0.66 0.86 

Grunnåi 0.97 0.48 0.76 

 

In general, temperature data of seNorge2 and NWP has a high correlation (all over 0.94). Hourly 

precipitation has a lower correlation than when aggregated to a daily timestep. The smallest 

catchments (Usma and Grunnåi) have the lowest correlation. When looking at the sub-catchment 

scale, the correlation is slightly decreasing with higher elevations. The correlation between hourly 

precipitation is in general relatively small, with a better correlation when aggregating them up to 

daily precipitation. The correlation of precipitation is decreasing with the elevation as well. Cold 
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temperatures lead to a decrease of correlation, especially in Nausta and Surna. Snow (temperatures 

below -5 °C) change the influence of elevation and catchment. Here, the correlation is constant 

over elevation, in some cases (for example Surna) higher elevations have better precipitation 

correlations. 

 

 
Figure 25: Spearman correlation of seNorge2 and NWP of each sub-catchment sorted by mean 

elevation and temperature 

5.1.3 Weather station 
A comparison of the datasets is complicated because there is not a lot of information about the 

ground truth available in most of the catchments that is not already included in the products itself. 

Nevertheless, a weather station maintained by TrønderEnergi AS is available that is located 30 km 

away from the Usma catchment. That is why the two datasets were compared with that weather 

station. To compare the observations, the gridded datasets were extracted at the location of the 

weather station and timeseries created. The comparison was done between 2014 and 2017. 

At first, temperature and precipitation were compared by using the correlation and a linear 

regression (see Figure 26). Temperature has a higher correlation than precipitation. When looking 

at the linear regression, the temperature seems to be slightly underestimated by seNorge2, 

especially lower temperatures. NWP only underestimates temperatures above 0 °C. Hourly 

precipitation has a low correlation. Both datasets seem to underestimate the precipitation amount. 

When aggregating precipitation to daily values, the correlation increases strongly. NWP seems to 

overestimate the precipitation, whereas seNorge2 underestimates it. 
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Figure 26: Comparison of NWP, seNorge2 and a weather station near Usma. Time period: 2014-

2017 
 

In a further step, the mean temperature and precipitation was calculated of the weather station, 

NWP and seNorge2. This provides information about biases of the datasets. The results are 

summarized in Table 7. The mean annual temperature, as well as in summer and winter, is assumed 

lower in the gridded datasets. NWP is slightly closer to the gauge observation. The precipitation 

sum is estimated higher in both datasets than measured by the gauge. NWP is 38 % higher than the 

observed precipitation amount (31 % in summer and 28 % in winter). SeNorge2 overestimates the 

precipitation by only 2 % with almost no difference in summer and 7 % in winter. 
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Table 7: Mean Temperature and Precipitation of weather station, NWP and seNorge2 near Usma 

Temperature 

 
Mean annual 

temperature [°C] 
Mean temperature in 

summer* [°C] 
Mean temperature in 

winter** [°C] 

Weather station 4.87 9.50 0.23 

seNorge2 3.72 8.57 -1.15 

NWP 4.25 8.99 -1.15 

Precipitation 

 
Mean annual 

precipitation sum [mm] 
Mean precipitation 

sum in summer [mm] 
Mean precipitation 
sum in winter [mm] 

Weather station 906 502 404 

seNorge2 926 503 423 

NWP 1246 730 516 

*summer between April and September 

 **winter between October and March 

5.1.4 Mass balance 
A way to evaluate the quantity of precipitation is to compare the volume of discharge, precipitation 

and evapotranspiration. For that, the discharge volume of observations was calculated within a 

hydrological year (September to August) and was scattered against the precipitation volume of the 

basin. Figure 27 combines the water balance of all catchments. Dots over the black line can be 

assumed to underestimate precipitation, points underneath it are overestimating. The difference 

between points and the black line are summarized as boxplots (including each year) at the lower 

right side.  

 
Figure 27: Comparison of annual volume amount of runoff plus evapotranspiration (MOD16) and 

precipitation for each catchment and differences to the water balance (lower right) 
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5.1.5 Inverse modelling 
The last step of comparing the dataset was to use an inverse hydrological model as a comparison. 

For that, the precipitation was calculated from discharge data according to chapter 2.1.3. The 

calculation of sensitivity-curve-parameters is shown in appendix D. Because snow melt in the basin 

could bias the results, a time period between June and October was modelled between 09/2014 

and 09/2016. The results of these two years were then averaged for each year. This was done for 

each catchment. The resulting precipitation amount of the inverse model are compared with the 

datasets in Table 8. 

 

Table 8: Precipitation amount between June and October estimated by an inverse hydrological 
model (Kirchner 2009), seNorge2 and NWP. Data is averaged between 2014 and 2015. 

 
Kirchner (2009) seNorge2 NWP 

Nausta 1066 mm 603 mm 729 mm 

Usma 934 mm 306 mm 447 mm 

Gaulfoss 437 mm 305 mm 422 mm 

Grunnåi 1289 mm 728 mm 620 mm 

Rinna 718 mm 393 mm 616 mm 

5.2 Model calibration 
This chapter combines the results of testing different calibration methods as well as the results 

from the actual calibration of each catchment and each precipitation product. 

5.2.1 Development of a calibration strategy 
To create reliable results that can provide information about the datasets, the model must create 

reasonable outputs. A good calibration is the key for that. In this study, different approaches of 

calibration were tested and evaluated. First, the automatic calibration method was evaluated, soil 

layer calibrated for each catchment and a stepwise calibration applied. For further analysis, low 

flows were calibrated, different snow models tested and a method for calibrating multi-gauge 

catchments developed. 

5.2.1.1 Automatic calibration method 
In this section, two automatic calibration methods were tested and compared. They were both 

applied in Nausta with the seNorge2 dataset. Different combinations of parameters (generations 

and populations) were tested. The calibration period is from 09/2013 to 09/2015. Validation is 

between 09/2015 and 09/2016.  

DEMC was tested first. For that, the number of generations and populations was varied for the 

calibration. The calibration was repeated two times to test the reproducibility. It needs to be 

mentioned that these results were only archived at the end of this study. When first testing this 

method, the validation results were lower (the highest value had a KGE of 0.79). After gaining more 

information about the output variable structure (explained in chapter 4.2.5.1), the results according 

to Table 9 were archived. The best KGE is achieved with the highest number of simulations. The 

validation shows good agreement as well. 

As a quick test to see whether DEMC would have outperformed the chosen calibration method, it 

was applied with 9000 simulations in two catchments (Nausta and Usma) to compare the 
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performance. In Nausta, DEMC created a KGE of 0.923 with seNorge2 in the calibration period 

compared to 0.927 that was calibrated with a stepwise approach. NWP performed with a KGE of 

0.850, the chosen method (stepwise) had an KGE of 0.870. For Usma and seNorge2 DEMC calibrated 

a KGE of 0.757 (stepwise 0.797) and with NWP 0.866 (stepwise 0.876). 

 
Table 9: Summary of different calibration tests using DEMC 

Calibration 
parameters 

KGE 
calibration 

KGE 
validation 

KGE 
calibration 

KGE 
validation Wall time* 

Calibration 1 Calibration 2 

ngen: 20 
npop: 100 

0.820 0.817 0.816 0.799 
2.5 h 

11 min/sub-
basin 

ngen: 100 
npop: 20 

0.894 0.857 0.852 0.897 
2 h 

9 min/sub- 
basin 

ngen: 200 
npop: 20 

0.887 0.855 0.908 0.892 
3.5 h 

15 min/sub- 
basin 

ngen: 300 
npop: 30 

0.918 0.895 0.924 0.892 
20 h 

86 min/sub- 
basin 

*C  : Intel® Core™ i -9850H CPU @ 2.60 GHz 

 

Figure 28 shows the development of KGE during the calibration process with 2000 and 9000 

simulations. At the beginning, the KGE varies between zero and one, but after enough simulations, 

the KGE starts converging against a higher value. However, even after 9000 simulations the KGE 

didn’t fully converge. 

 

 
Figure 28: KGE development during the DEMC calibration with ngen=100 and npop=20 (left) and 

with ngen=300 and npop=30 (right) 
 

In a next step, the progressive Monte Carlo Method was applied for calibration. Here, the number 

of stages and simulations per stage were varied. Results are summarized in Table 10. Because the 

progressive Monte Carlo method depends on results of the first stage, the calibration was repeated 

a second time, to compare performances of each run and test the stability of the results. It can be 

seen that the highest KGE in calibration and validation was archived with the highest number of 

simulations. The change between the first and second calibration is the lowest in that case. 
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Table 10: Summary of different calibration methods using the progressive Monte Carlo method 

Calibration 
parameters 

KGE 
calibration 

KGE 
validation 

KGE 
calibration 

KGE 
validation Wall time* 

Calibration 1 Calibration 2 

num_bpmc: 200 
num_bpmax: 5 
num_ens: 5 

0.823 0.785 0.838 0.824 
1h 

4 min/sub-basin 

num_bpmc: 200 
num_bpmax: 10 
num_ens: 5 

0.871 0.855 0.853 0.821 
1.7 h 

8 min/ sub-
basin 

num_bpmc: 200 
num_bpmax: 15 
num_ens: 5 

0.833 0.816 0.865 0.852 
2.5 h 

11 min/ sub-
basin 

num_bpmc: 1000 
num_bpmax: 10 
num_ens: 10 

0.837 0.841 0.864 0.837 
17 h 

73 min/ sub-
basin 

num_bpmc: 5000 
num_bpmax: 2 
num_ens: 2 

0.864 0.848 0.852 0.814 
19.5 h 

84 min/ sub-
basin 

num_bpmc: 5000 
num_bpmax: 5 
num_ens: 5 

0.869 0.866 0.869 0.864 
25 h 

107 min/ sub-
basin 

*CPU: Intel® Core™ i -9850H CPU @ 2.60 GHz 

5.2.1.2 Stepwise calibration 
A stepwise calibration was first applied in the Nausta catchment and showed an improvement of 

the KGE, when done as explained in chapter 4.2.5.2. In the first test case, the initial calibration was 

done with only 2,000 simulations. The improvement of the KGE during the stepwise calibration was 

from 0.69 to 0.80 and from 0.91 to 0.94 for an already high KGE. This fine-tuning of parameters was 

decided to be applied for all sub-catchments. 

An example of a stepwise calibration process is shown in Figure 29 and Figure 30. When calibrating 

a model with NWP, the KGE is improving slightly and the KGE of the validation is improving as well. 

In the second iteration, there is no or only a small amount of improvement. SeNorge2 shows a 

higher increase during the stepwise calibration. Nevertheless, the KGE of the validation is varying 

within each step and only slowly increasing.  

The results of other catchments are summarized in Appendix D and figures of stepwise calibrations 

are in the digital appendix. In general, the KGE is improved in the final calibration between 0.01 and 

0.07. The KGE was more or less constant after the first iteration. The performance of the validation 

was only decreased in one catchment (namely Surna) but was constant or increasing in every other 

catchment.  
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Figure 29: Stepwise calibration results in Grunnåi with NWP 
 

 
Figure 30: Stepwise calibration results in Grunnåi with seNorge2 

 

5.2.1.3 Multi-gauge calibration 
Another strategy had to be developed for Gaula, because it contains more than one discharge gauge 

that can be used for calibration. Table 11 summarizes the results of this process. Here, different 

stations were calibrated (all of them or only three/two/one). The KGE of the calibrated stations is 

given, as well as the KGE of all stations when using the calibrated parameter set. The time and 

number of calibrations is included as well. In the first row, the KGE is given as the mean of all 

stations, in the other rows it is the average. 
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Table 11: Results of different calibration strategies in Gaula 

  
KGE 

calibration 
KGE all 
stations 

KGE 
Validation 

KGE Validation 
all stations Time [h]  

Number of 
calibrations 

Median all 
stations 0.632 - 0.642 - 25 *  

Average all 
Stations 0.679 - 0.483 - 25 * 2000 

Gaulfoss-
Lillebudal-Gaua 0.703 0.585 0.464 0.464 47 ** 2000 

Gaulfoss-Hugdal 0.635 0.635 0.581 0.581 48 ** 2000 

Gaua 0.842 0.704 0.73 0.649 8 * 25000 

Lillebudal 0.667 0.664 0.487 0.575 14 * 25000 

Killingdal 0.686 0.638 0.642 0.553 15 * 25000 

Hugdal bru 0.737 0.682 0.733 0.656 135 ** 25000 

Eggafoss 0.755 0.636 0.703 0.547 48 * 25000 

Gaula ovf. Fora 0.78 0.606 0.651 0.505 275 ** 25000 

Gaulfoss 0.750 0.617 0.7496 0.544 16 * 2000 

*   C  : Intel® Core™ i7-9850H CPU @ 2.60 GHz 

** C  : Intel® Core™ i -8665U CPU @ 1.90 GHz 

 

After calibrating the catchment with these methods, the KGE of all the other stations was checked. 

Figure 31 shows the KGE distribution of all gauges when calibrating with the median and average 

KGE. It also shows the distribution when only one catchment is calibrated (Gaua and Gaulfoss).  

 

 
Figure 31: KGE of parameter set resulting from calibration with median KGE (upper left), average 

KGE (upper right), Gaua (lower left) and Gaulfoss (lower right) 
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5.2.1.4 Low flow calibration 
The low flow calibration was done to test the influence of input data towards poor low flow 

performances. Different approaches and their results are described in Appendix E.2. After testing 

everything, no promising solution was found. However, seNorge2 had a better performance of the 

low flows in Nausta and Usma, compared to NWP. 

5.2.2 Soil layer calibration 
To check whether another amount of soil layers or soil thicknesses will improve the model 

performance, these values were varied in GeoClass.txt. and the model calibrated. In this 

calibration, the progressive Monte Carlo method with 10 x 200 simulations was applied using the 

seNorge2 dataset. The resulting KGE of each catchment with different soil layer properties is 

summarized in Table 12. Most of the catchments have the highest performance with three soil 

layers. The only exception is Grunnåi, that performed best with two soil layers. 

 

Table 12: Results of soil layer calibration in all of the catchments. 
  Nausta Usma Gaula Surna Grunnåi 

n layers Soil thickness [m] KGE KGE KGE* KGE KGE 

1 
1 0.852 0.665 0.588 0.657 0.684 

2 0.864 0.620 0.423 0.669 0.636 

2 

1 0.855 0.651 0.601 0.648 0.642 

2 0.841 0.680 0.607 0.657 0.688 

3 0.874 0.701 0.579 0.672 0.590 

3 

1 0.871 0.604 0.580 0.655 0.677 

2 0.911 0.706 0.586 0.674 0.509 

3 0.901 0.718 0.647 0.662 0.650 

* Average KGE of all catchments 

 

After calibrating the soil thickness, the best results were further analysed by varying the stream-

depth. For that, it was set on ground level (0) and 25 cm above and beneath it. The same calibration 

method as in the soil layer calibration was applied. The results are summarized in Table 13. Every 

catchment had the best performance for a stream-depth similar to the ground of the soil, meaning 

that there is no standing water in the catchment in that case. 

 

Table 13: Results when changing the stream-depth with the best results from Table 12 

 Stream depth 
Difference to 
layer ground 

Nausta Usma Gaula Surna Grunnåi 

 KGE KGE KGE KGE KGE 

-0.25 m 0.911 0.872 0.637 0.651 0.531 

0 m 0.924 0.877 0.647 0.688 0.733 

+0.25 m 0.856 0.829 0.601 0.680 0.661 

 

All of these calibrations were done with seNorge2. To test if there is a dependence on the dataset, 

the stream depth was varied in Nausta and the NWP dataset. Here, the highest KGE was calculated 

with a stream-depth of 25 cm above the soil ground. 
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5.3 Model results 
After finishing the catchment calibration, the model performance was compared, characteristics of 

the modelling results were analysed more in detail and simulated discharge from each dataset was 

compared to the actual observation. In the next step, water balances were created for each 

catchment for an annual and monthly timestep. Storage changes in the model were analysed 

additionally. Finally, specific events were portrayed and evaluated by comparing model results, 

precipitation data and precipitation calculated from an inverse modelling approach.  

5.3.1 Performances 
After setting the soil layers to the ones with the best results of the soil layer calibration, the main 

calibration process could start. For that, the algorithm from chapter 4.5.2 was applied. The final 

performance of the models between 09/2014 and 09/2016 is summarized in Figure 32. The 

performance of each catchment is given when using seNorge2, NWP and weather station data (WS) 

as input into the model. Furthermore, each catchment was one time calibrated using precipitation 

correction factors pcurain and pcusnow and one time without them. The validation is included as 

well. The weather station of Grunnåi is an exception because it was calculated with daily values 

(instead of hourly). Usma was not validated because of a lack of long enough discharge time series. 

 

 
Figure 32: Model performances of each catchment using different input datasets 
 

Gaula is divided into different sub-catchments. The results are summarized in Figure 33. All of these 

performances are based on the optimization of the average KGE. The results appear to be variable 

and seNorge2 and NWP performances vary in each sub-catchment. The KGE of the validation seems 

to often increase when using seNorge2 as input and is decreasing when using NWP. 
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Figure 33: Performance of each catchment in Gaula with different datasets 

 

5.3.2 Individual catchment results 
To get a more detailed information about the model behaviour within each catchment, the results 

were evaluated by their Cumulative Distribution Function (CDF), correlation towards observations, 

performance in summer and winter and improvement after the stepwise calibration. In this 

chapter, an example of the analysis process is given in the first part, afterwards the results of each 

catchment are briefly summarized. 

The detailed result of Nausta using seNorge2 with snow and rain correction as input is described in 

the following. First, the correction parameters pcurain and pcusnow are read out of the resulting 

parameter set from the calibration. In this case rain is increased by a constant factor (pcurain) by 

5 % and snow (pcusnow) by 17 %. Afterwards, the improvement of the KGE and NSE during the 

stepwise calibration is calculated. Here, the KGE increased by 0.06 compared to the initial 

calibration with 25,000 simulations, when fine-tuning the parameters. The KGE of the final model 

is 0.934 with a slightly lower performance in summer. When looking at the CDF (see Figure 34) low 

flows are in good agreement with observations, but are slightly underestimated. Peaks are 

underestimated as well. The CDF was separated into winter (October to May) and summer (May to 

October) and analysed in a similar way. In summer, peaks and low flows show a good agreement 

with the observations. In winter, peaks and low flows are underestimated.  

  

 
Figure 34: CDF Nausta modelled with SeNorge2 and precipitation correction 
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Furthermore, a comparison of observed and simulated discharge was done by scattering these 

values (see Figure 35) and calculating the correlation (r2) in summer and winter. In this case, winter 

values have a better correlation to observations. The linear regression shows that the simulated 

discharge is slightly underestimating the discharge. This is just an example of the analysing process. 

Other figures can be found in the digital appendix.  

 

 
Figure 35: Scatter Nausta modelled with SeNorge2 and precipitation correction 
 

The analysis explained above is summarized for Nausta in Table 14. Besides the corrected version 

of seNorge2, it also contains the results of uncorrected seNorge2 and NWP. Here, the performance 

is slightly worse. All of them perform poorer in summer, the difference is higher with NWP. NWP 

seems to underestimate low flows more than seNorge2. The correlation is also lower when using 

NWP (corrected and uncorrected) as model input. 

 

Table 14: Summary results Nausta 

   SeNorge2 
SeNorge2 

corr 
NWP NWP corr 

Correction 
pcurain - 0.05 - 0.004 

pcusnow - 0.17 - -0.083 

Difference 
calibrations 

KGE improvement 0.003 0.006 0.003 0.003 

NSE improvement  0.009 0.001 0.008 0.008 

Performance 

KGE 0.922 0.934 0.871 0.871 

KGE summer 0.916 0.921 0.779 0.781 

KGE winter 0.926 0.933 0.885 0.880 

NSE 0.864 0.868 0.756 0.760 

NSE summer 0.865 0.8474 0.689 0.733 

NSE winter 0.856 0.873 0.774 0.765 

CDF 

Low flows* (su) (su) (u) (u) 

Low flows summer* (u) (g) (u) (u) 

Low flows winter* (u) (u) (u) (u) 

Peaks* (u) (u) (u) (u) 

Peaks summer* (u) (su) (o) (g) 

Peaks winter* (u) (u) (u) (u) 

Scatter  

r2 all 0.87 0.87 0.78 0.78 

r2 summer 0.87 0.88 0.79 0.82 

r2 winter 0.87 0.86 0.78 0.78 

* underestimated (u), slightly underestimated (su), in good agreement (g), slightly overestimated 

(so) and overestimated (o) 
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The results of the other catchments can be found in Appendix F and the digital appendix. Here, they 

are briefly summarized. In Usma, the uncorrected precipitation set of NWP yields to the best model 

performance and correlation compared to observations. It also leads to a better performance in 

winter. When using correction factors for NWP, the model performance is not improved. The 

corrected model with seNorge2 leads to better results and correlations. Usma has a poorer 

agreement in winter than in summer for all datasets. The weather station does not create the best 

results but has however the best fitting low flow conditions. In Grunnåi, seNorge2 yields to better 

performances than NWP and the weather station. The peaks are better estimated and the 

correlation is higher as well. All datasets lead to a low performance in winter especially with NWP 

and the uncorrected weather station data. SeNorge2 is calibrated with a better performance in 

Surna as well (corrected and uncorrected). However, NWP has a better correlation with observed 

values, especially in winter. Both datasets lead to an underestimation of low flows. In Gaula, all 

catchments underestimate low flows and dry out regularly. The KGE is always worse in winter than 

in summer. There are catchments with a better performance of seNorge2 and some with NWP data. 

The same happens with the correlation. The corrected version of the datasets does not lead to an 

improved performance in all catchments. 

To have a closer look on simulated discharges, the cumulative volume sum of each dataset was 

compared within each catchment. The spread of simulated discharge was visualized by filling the 

minimum and maximum discharge estimated with the datasets. The results of Nausta are visualized 

in Figure 36. Figures of other catchments can be found in Appendix F. In Nausta, the spread 

between discharges is not high. In general, all observed data is in between the model results. 

However, there are some events were no dataset agreed with the observations. For example, in 

January 2016, where no model calculated the discharge that was observed. In October 2014 as well 

as April 2016 assumed the datasets a discharge peak, that was not observed. Additionally, the 

model underestimates low flows with every dataset in winter. The cumulative volume sums show 

that seNorge2 is below the observed volume, the corrected version is however more or less similar 

and additionally has the same slope as the curve. NWP is above the curve, the corrected version 

even higher.  

 

 
Figure 36: Comparison modelling results of Nausta using different input datasets. The time series 

was averaged to a daily timestep. Grey area: simulated discharge from the different 
products  
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When looking at the results of other catchments, the spread of the simulated discharges of the 

datasets is bigger compared to the observed discharge in Usma and Grunnåi. A low flow 

underestimation of all the datasets is found in Rinna and Grunnåi as well. In Usma, there are events 

where no dataset lead to a discharge peak, for example in October 2014 and March 2016 and on 

the other side where models wrongly assumed discharge peaks, for example in July 2016. In 

Grunnåi, there are less events where discharge was not simulated at all from the datasets. However, 

in June 2016 the spread of one event was particularly high. An inverse example, where a discharge 

peak is assumed by every dataset but was not measured is March 2016. Rinna has some events 

where some datasets didn’t show precipitation, for example September 2014 and December 2015. 

In April 2015 and in June 2015 the models simulated a discharge peak that was not observed by the 

discharge gauge.  

Gaula is divided into seven different hydrographs for each gauging catchment. These results vary 

strongly. In the catchments Gaua, Hugdal bru and Killingdal are a lot of fast increasing and variable 

discharge peaks, whereas Gaulfoss is smoother. The spread of the models with different datasets 

is wide, but there are not many events, where the behaviour differs strongly. Some events were 

found that had similar results as the ones described in the last chapter. They will be portrayed in 

detail in chapter 5.3.4. 

The cumulative discharge volume modelled with seNorge2 is always below the observations and 

also the smallest one of the datasets, except for Grunnåi, where the model with weather station 

data simulates an even smaller discharge volume and Gaua, where NWP values are smaller. The 

model with model correction factors is volume wise close to the observations in Rinna and Usma. 

NWP has a good agreement in Usma and Grunnåi, but is highly overestimating the discharge in 

Rinna. NWP with precipitation correction leads to an overestimation in all of the catchments, except 

for Gaula.  

5.3.3 Water balance 
For further analysis, the modelling results were evaluated with the water balance of each 

catchment. First, the annual water balance during the study period was portrayed. Then seasonal 

behaviour was analysed for each catchment in detail. To make sure there is no water accumulation 

in a storage, the water volume of different storages (e.g. lakes, groundwater) was controlled. In the 

last subsection of this chapter, PET from MOD16 was compared to the one calculated with 

Hargreaves. 

5.3.3.1 Annual water balance 
All sub-basins were averaged according to their area to calculate the water volume. To get 

comparable results of the datasets, only simulated values between 2014-2016 (September to 

September) are included. The annual water amount of both years was then averaged, and the 

resulting values visualized. In Figure 37 are the results of all catchments except for Gaula. The 

results of sub-catchments in Gaula are in Appendix F.1. 

The figure visualizes the different water volumes in the catchment. In general, the precipitation 

amount varies the most. SeNorge2 and the weather stations usually assume the lowest amount of 

water. The evapotranspiration varies as well and is assumed to be lowest when using seNorge2 and 

weather stations data. The black line represents the evapotranspiration amount estimated by 

MOD16 and can be used for comparison. In general, it assumes the highest amount of 

evapotranspiration in most of the catchments compared to the model. The discharge volumes are 

close to each other for each dataset, and close to the observed discharge with some exceptions. 

The annual storage change simulated by the model is in most cases close to zero. However, NWP 

in Usma leads to an accumulation of storage, seNorge2 to a decrease. In Nausta, there is an increase 
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in the water storages as well for all of the datasets. The storage changes calculated with the 

precipitation products, simulated evapotranspiration and observed discharge data show more 

variation in the volume. They agree with the under- or overestimation of discharges with 

precipitation of the datasets. They display the water storage change in the catchment when 

precipitation data is assumed to be true, and the modelled evapotranspiration is correct. 

Gaula (see Figure 85) includes different catchments, but the correction factors are calibrated 

equally for each of them. The model with seNorge2 always leads to an underestimation of the 

discharge and low evapotranspiration amounts. The corrected version increases the 

evapotranspiration and discharge, but is still, except for Gaulfoss, lower than the observational 

data. Using NWP leads to an overestimation in Gaula ovf Fora. Whereas the discharge volume in 

other catchments is underestimated. This also leads to varying influence of the correction factor in 

these catchments. Evapotranspiration by MOD16 is higher than most of the model results. Only in 

Gaua, NWP assumes a slightly higher AET than estimated by MOD16. Most catchments have barely 

any storage changes within the model. 

 
Figure 37: Annual water balance of the catchments Grunnåi, Nausta, Surna and Usma. Values are 

averaged between 2014 and 2016. Observations are discharge measurements and 
MOD16 evapotranspiration data 
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5.3.3.2 Seasonal cycle 
To further investigate the influence of these datasets on the water balance, the seasonal cycle of 

precipitation, evapotranspiration, discharge and water changes were analysed. For that, the 

monthly precipitation, evapotranspiration and discharge amount was accumulated, and the storage 

changes were calculated using the water balance equation. This was done for every catchment 

individually. 

Figure 38 shows an example of Usma. Here, precipitation (first row) is divided into month from 

September to August. The values are an average between 09/2014 and 09/2016. The monthly 

precipitation sum is then compared between seNorge2, NWP and weather station data. There is a 

lot of variation between these volumes. There is no month where seNorge2 estimates more 

precipitation than NWP. The seasonal behaviour is similar within all datasets with less precipitation 

in winter than in summer. The corrected versions of NWP and the weather station vary stronger 

from the original in summer than in winter. 

 
Figure 38: Seasonal water balance of Usma when using different input products. Observed values 

are from discharge measurements and MOD16. 
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The second row shows the seasonal evapotranspiration cycle. Here, MOD16 data is included as a 

reference. Evapotranspiration in Usma only occurs from Mai to October. The model with seNorge2 

barely assumes any AET, more when corrected. For most cases, MOD16 assumes more 

evapotranspiration than the model estimates. The monthly discharge volume shows another 

relation between the products. In general, the volumes vary less. From June to September, 

seNorge2 creates a higher amount of discharge than NWP. The snow melt flood is mostly in May 

and June. Here, NWP shows a better agreement with the discharge amount. The storage changes 

are (except for NWP) almost zero from July to October. Between November and April, the storage 

is increasing, in Mai and June, the storages decrease. Simulated and measured storage changes are 

mostly similar, except for summer with higher amounts of the measured storage. 

Looking at the other catchments (see Appendix F.1) shows similar results. In Nausta, seNorge2 

precipitation is lower than NWP, but the corrected version is almost similar to it. Evapotranspiration 

with seNorge2 is significantly lower than MOD16, NWP is a bit higher. There is no significant snow 

melt flood in Nausta during spring. NWP tends to overestimate discharge in summer. The storages 

are increasing from October to April and decreasing in the summer month.  

Grunnåi is an exception to other catchments, because here, seNorge2 estimates a higher amount 

of precipitation in September and August compared to NWP and weather stations. Compared to 

NWP, the weather station data is especially low in the winter. The corrected versions of this 

catchment are close in term of precipitation amount in each month. The evapotranspiration is 

always assumed to be lower than MOD16. Only the corrected version of NWP is close to MOD16. 

All datasets lead to lower discharge volumes in winter, NWP leads to an overestimating the 

discharge in May and June (snow melt). In terms of storage change, it was found that models using 

NWP have higher storage increases in winter and decreases in spring. 

In Surna, seNorge2 is again estimating the lowest amount of precipitation in every month, the 

corrected version of NWP is on contrary high compared to seNorge2 in winter. Evapotranspiration 

is again low for seNorge2, NWP estimates are close to MOD16. SeNorge2 leads to better agreement 

of simulated and observed discharge volume except for winter and the spring snow melt flood.  

Figures of the seven catchments of Gaula can be found in the digital appendix. In Gaulfoss and 

Hugdal bru, seNorge2 and NWP mostly differ in summer, but is almost similar in winter. Same 

applies for the discharge. In Eggafoss, Killingdal and Lillebudal, NWP is higher than seNorge2 in 

every month. The spring flood in May is underestimated strongly using both datasets in Killingdal, 

but is in good agreement with NWP in Lillebudal. High discharges in January are not simulated by 

any model in Lillebudal and Hugdal. In Gaua, seNorge2 estimates higher values than NWP, except 

in summer, leading to higher simulated discharges. 

5.3.3.3 Storage changes 
A last step to compare the model’ water balances was to assess storage changes within the model. 

The annual water balance already showed that there is no accumulation in most of the catchments, 

but in some cases, there was an increase or decrease of storages. That’s why all the water balance 

files were analysed and visualized over time to see whether there is an accumulation or decrease 

of water volume in one of the storages.  

The water balance was analysed and the storages changes were calculated by summing up the 

storage volumes. To test whether all water storages are included, the storage changes were 

calculated as well using the water balance equation (Eq. 1). They were the same in all catchments 

and only varied in a small manner (up to 3 mm in Usma, but usually below 1 mm of difference).  

These figures of all catchments are in the digital appendix. Appendix F.1 includes three examples of 

the storage behaviours that were found in the catchments. Figure 89 shows a catchment with no 

storage changes in the model. During winter, there is an increase of storages through snow, that 

decreases in spring. That behaviour was seen for most of the model results. 
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However, there are model results, where the storage increases. Figure 90 shows an example of 

Usma. There, the storage increases over the two years, by an accumulation of water inside the river. 

The same process happened for the corrected seNorge2 version in Usma. This model is however 

less strong accumulating. Figure 91 shows an example of snow accumulation in Nausta where snow 

melt is not fast enough to melt snow in the upper catchments before the next winter. This is the 

case for the NWP dataset as well as the corrected version of seNorge2. 

5.3.3.4 Comparison evapotranspiration 
To evaluate the calculated PET, it was compared with MOD16 data of each catchment. Figure 39 

shows a timeseries of MOD16 PET and AET compared to PET calculated with Hargreaves in Gaula. 

It shows that Hargreaves values are in between PET and AET from MOD16, meaning that the 

calculated PET is lower than the one given from MOD16. Still, it is never lower than AET. There are 

no values of MOD16 in the winter month, probably because it is assumed to be no 

evapotranspiration then. Hargreaves is close to zero in these months.  

The evapotranspiration time series of other catchments can be found in the digital appendix. They 

behave in a similar way, except Hargreaves PET of Grunnåi is close to MOD16 AET, but still almost 

always higher. 

 

 
Figure 39: Evapotranspiration from Hargreaves and MOD16 over time (2000-2018) of the Gaula 

catchment 
 

5.3.4 Analysis of selected events 
After looking at model performances and water balances, the datasets were further evaluated by 

looking at specific events. Figure 40 shows an example of such an event. The events were further 

visualized as a video of the spatial distribution of precipitation over time. These videos can be found 

in the digital appendix. 

The example shown here is in Usma on the 13th of July in  2015. Here, a discharge peak was 

measured from the  discharge gauge, but no model assumed this behaviour of the catchment. The 

weather station and se orge2 didn’t estimate any or just a small amount of precipitation at that 

time. NWP estimated a precipitation amount of 2.5 mm in one hour.  
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Figure 40: Precipitation event in Usma, July 2015 

 

To test, how much precipitation should have been estimated according to the discharge data, the 

method of Kirchner (2009) was applied by using an inverse model for estimating the precipitation 

amount. The results can be seen in Figure 41. The inverse model predicts that there have been two 

precipitation events. One at 12 am with 2 mm and one at 2 pm with 8 mm. NWP estimated the 

same precipitation amount at 12 am, however missed the other one in the afternoon. SeNorge2 

missed the first event and highly underestimates the second one. 

 

 
Figure 41: Precipitation estimated from seNorge2, NWP and an inverse hydrological model in 

Usma, July 2015 
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More events were looked at and can be found in Appendix G. Usually, when the model did not react 

to discharge that was observed by the gauge, precipitation was not measured enough or not at all. 

This behaviour can be seen in the event in Usma, October 2014 (see Figure 92), where seNorge2 

did barely assume any precipitation, NWP about 5 mm, but the model showed no major outflow 

response and the weather station measured about 7 mm leading to a good correlation between 

simulation and observation discharge. The inverse hydrological model assumed a precipitation sum 

of 20 mm (see Figure 93). When looking at the spatial variability of the event (see digital appendix) 

the precipitation is locally concentrated. 

Another similar event to this is in September 2014 in Rinna (see Figure 94), where the model did 

not react to precipitation from NWP, but was in better agreement with seNorge2. In this case 

however, both datasets assumed the same precipitation amount. The uncorrected seNorge2 model 

is overestimating the discharge, although less precipitation is assumed compared to the corrected 

precipitation amount. A similar behaviour was found in Eggafoss in October 2014. SeNorge2 leads 

to a good flood response with the precipitation amount, whereas the model calibrated with NWP 

did not react at all. 

In some cases, missed discharge peaks can also be caused by temperature. One example is in Nausta 

in January 2016 (see Figure 95). Here, temperature data is included. No dataset assumed heavy 

precipitation, nevertheless the discharge increased during that time. Temperatures were at about 

-5 °C and only increased during a snow event five days after the original observed discharge 

increase. Another example is in Rinna in December 2015, where a discharge peak was measured, 

but not simulated, because temperatures were below -5 °C and only later rose above 0 °C, leading 

to a delayed discharge peak (see Figure 96). Another example is in Hugdal bru (Gaula) in January 

2016 (Figure 101), where a high discharge was measured even though there was no precipitation 

assumed and temperatures were below -10 °C. 

Then there are events where the model calculated discharge that was not measured by the gauge. 

One example of this phenomenon is in June 2016 in Grunnåi (see Figure 97), where seNorge2 

estimated a high precipitation amount leading to a discharge peak, that was not measured by the 

discharge gauge. NWP estimated only a small rain rate, leading to no particular increase of 

discharge in the model and is therefore in better agreement with the observation. Another good 

example is in Surna, June 2015 (see Figure 98). Here, only NWP estimates precipitation, whereas 

seNorge2 didn’t estimate any. In Gaua (Gaula) in July 2016 NWP estimates higher precipitation rates 

leading to a flood response that was not measured by the model.  

5.4 Sensitivity analysis 
In the last part of the study, the sensitivity of the model and the results were evaluated. For that, 

GLUE was applied, the calibration and validation period switched, and physical parameter 

compared and analysed.  

5.4.1 GLUE 
GLUE analysis was applied for two catchments. At first, the parameters were normalized and 

compared with each other. These results can be found in Appendix H, Figure 102 and Figure 103. 

There are mostly no parameters converging against the boundaries. In Grunnåi, some parameters 

like pcusnow and rivvel are close to the boundary. There are some parameters that don’t have 

varying values (e.g. rivvel, cmelt and pcurain), whereas others spread a lot (e.g. surfmem, wcfc, 

wcep and fcdistmax).The same results were found in Nausta, except that there was a wider spread 

of rivvel, cmelt and pcurain. Furthermore, the river velocity showed different values depending on 

the input dataset. 
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To get a more detailed look into the parameter results of each run, the values were visualized in 

more detail. This is shown in Figure 104 in Appendix H. There are parameters, that don’t vary 

between each model run like rivvel, pcurain, pcusnow, damp. Then there are parameters, that vary 

with each model run, but not within the best five results (like cmelt, grata, gratp, ttpd). There are 

also parameters varying in each run and within the best five results (e.g. cevpph, cevp, srrcs, fsceff). 

In general, there is a wide spread of parameter space for some of the parameters. An example of 

the three different types is shown in Figure 42 with rivvel, grata and cevpph. 

Figure 105 shows the same analysis for Nausta. There are less parameters with no spread between 

each run. All parameters that did not change in each run in Grunnåi, vary in Nausta (rivvel, pcurain, 

pcusnow, damp). Other parameters (like cmelt, grata, gratp, ttpd) however behave similarly. 

 
Figure 42: Example of the calibrated parameter space of rivvel, grata and cevpph in Grunnåi 

5.4.2 Variating calibration and validation period 
Additional to GLUE, a more simplistic approach was done, by switching calibration and validation 

period. This was done for three catchments: Nausta, Grunnåi and Rinna. The results are 

summarized in Table 15. To understand the table structure, an example is given here. In Nausta, 

seNorge2 was originally calibrated between 2013/09 and 2016/09 (time period 1) resulting in a KGE 

of 0.918. The validation was between 2011/09 and 2013/09 (time period 2) and resulted in a KGE 

of 0.725. When switching the calibration period to time period 2, the KGE is 0.913. Validation in 

time period 1 leads to a KGE of 0.924. 
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Table 15: Results of analysing the influence of a switched time period of calibration and validation 

 Time period 1 Time period 2 

Calibration Validation Validation Calibration 

Nausta – SeNorge2 0.918 0.924 0.725 0.913 

Nausta – NWP 0.879 0.748 0.844 0.861 

Grunnåi – SeNorge2 0.845 0.367 0.507 0.825 

Grunnåi - NWP 0.809 0.811 0.759 0.807 

Rinna – SeNorge2 0.866 0.704 0.703 0.790 

Rinna – NWP 0.824 0.583 0.674 0.778 

 

These results were further analysed by plotting a double sum curve of precipitation and simulated 

discharge data for Rinna with both datasets (see Figure 107, Appendix H). It was found that the 

assumed precipitation amount (through correction factors of the models) varied depending on the 

chosen time period of the calibration. 

5.4.3 Analysis of physical parameters 
In the last step of this analysis, specific parameters were compared considering their physicality as 

well as their value with different datasets. At first, the parameters pcusnow and pcurain were 

evaluated in each catchment and for seNorge2 and NWP data. The values vary within the 

catchments, especially NWP, but even more between the two datasets. The results are visualized 

in Figure 43. 

 
Figure 43: Variation of pcurain and pcusnow in each catchment and for seNorge2 and NWP 

 

Another parameter that was analysed is the river velocity (rivvel), because it is a physical 

measurable value. The results are shown in Figure 44. This comparison shows the variability of this 

parameter in each catchment, but also with each dataset. To further asses this finding, the river 

velocity was compared with the mean slope and elevation of the catchment. This is shown in Figure 

106, Appendix H. There was however not a clear correlation visible between these values. 
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Figure 44: Comparison parameter rivvel in the catchment and with seNorge2 and NWP 

 

In the last step, a SLC dependent parameter was compared. The snow melt factor cmelt is calibrated 

separately for each SLC. The resulting parameter values are shown in Figure 45. Although they vary 

in general, there are some common behaviours. For example, parameters are often not changing 

between seNorge2 and NWP (with some exceptions). Often, the snow melt factor seems to be 

lower in forest and marsh areas, whereas mountains and water are a bit higher in most catchments. 

In Usma and Rinna however, the snow melt factor of mountainous and forest SLCs is the highest 

compared to other values. 

 

 
Figure 45: Snow melt factor cmelt for each SLC and catchment. Upper part: NWP, lower part: 

seNorge2 
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6 Discussion 
In this chapter, the results will be discussed and analysed. At first, the comparison between datasets 

will was evaluated, then the model results compared, by looking at the performance, water balance 

and specific events. At last, the sensitivity analysis will be discussed. 

6.1 General dataset comparison 
In a first step, the general behaviour of precipitation products was analysed and compared. The 

NWP product is based on radar and gauge data, but also includes a numerical weather product as 

background. This leads to fewer errors, because for example radar beam blockage can be balanced 

by the numerical model, which in return is also based on radar data (and other observations) as an 

initial state. Annual precipitation sums revealed that NWP always estimates the highest 

precipitation amount in each of the catchments. One reason for that might be the wind correction 

of gauge data, causing higher precipitation amounts, especially for snow. The annual precipitation 

sum was further analysed by using discharge measurements  and MOD16 evapotranspiration to 

calculate the water balance. NWP seems to under- and overestimate precipitation depending on 

the year and catchment. In Usma, it is overestimating the precipitation amount, which is in 

agreement with the comparison of NWP and a weather station near Usma using daily precipitation 

sums. However, this might also be caused by gauge measurement errors, for example by wind-

induced under catch of precipitation. 

SeNorge2 always estimated a lower amount of annual precipitation in each catchment. Looking at 

the water balance revealed that seNorge2 is underestimating annual precipitation in every study 

catchment by up to 900 mm/a. The underestimation is especially high in Nausta, Grunnåi and Rinna. 

One reason for that might be the high elevation of these catchments and the knowledge, that 

seNorge2 tends to underestimate precipitation in mountainous regions (Lussana et al. 2018). 

Another reason might be that wind-induced under catch is not corrected, causing an 

underestimation especially in winter. Compared to weather station data, the underestimation was 

also detected when looking at the linear regression of daily precipitation data. 

Looking at the spatial variability of annual precipitation sums revealed the influence of the DEM 

background field of the interpolation. For example in Grunnåi (Figure 60), lower elevated areas 

have lower precipitation sums than higher elevated areas. In Nausta (Figure 59) it is the other way 

around. Even so precipitation can be dependent on the elevation (for example in Nausta  because 

of orographic rain that is caused by humid air from the sea rising at the mountains and cooling 

down causing water to condensate), however there are limits to this assumption, for example by 

looking at small valleys.  

Regarding the water balance analysis, it needs to be considered that MOD16 is known to 

overestimate evapotranspiration (Huang et al. 2019), which would lead to the assumption that 

precipitation is more underestimated than it actually is. Still, the error of evapotranspiration can be 

assumed to be smaller than the one from precipitation, because the amount of evaporated water 

is much smaller than precipitation. 

Evaluating radar data revealed that it measures the lowest amount of precipitation compared to 

the other dataset. Because seNorge2 is already underestimating the precipitation amount, it can 

be concluded that radar is highly underestimating precipitation. Furthermore annual radar 

precipitation sums displayed some measurement errors. In Figure 23 and Figure 60 (Gaula and 

Surna) the different precipitation amounts measured at the edge of two radar beams can be found. 

This may be caused by partial beam blockage, attenuation and different  beam heights at the 

border. The annual radar precipitation of Nausta shows partial beam blockage (see Figure 57). The 

white spots in all precipitation sums could be caused by clutter correction.  
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The same pattern was found when looking at the annual precipitation sum of KliNoGridRad (Figure 

24). Although this data includes gauge information, beam blockages, attenuation and clutter 

corrections are still visible. KliNoGridRad only combines radar and gauge data, but does not 

consider other mistakes such as beam blockage. That means that the product leads to an 

improvement of the precipitation amount but cannot improve errors like shielding or clutters. 

Because of the discussed artifacts, radar data was not used as an input for a hydrological model, 

because these errors would bias the modelling results. This was also discussed and seen by Abdella 

et al. (2012). 

 

Looking at the correlation between NWP and seNorge2, as well as the correlation with the weather 

station revealed that temperature has in general a high correlation. This high correlation can be 

explained, because the spatial variability of temperature is in general smaller than precipitation 

(Ledesma and Futter 2017). An explanation for that are large scale atmospheric temperature 

anomalies, that are especially spatially representative in flat areas (Orlowsky and Seneviratne 

2014). When dividing the datasets by temperature and looking at the sub-catchment scale, the 

correlation of temperature decreases. It needs to be considered that only NWP data was used to 

divide them, leading to a bias that might explain this decrease. Temperatures below -5 °C seem to 

have the lowest correlation which leads to the assumption that the interpolation of temperature 

data is more erroneous with low temperatures. This might also explain the decrease of temperature 

correlation in higher elevated catchments because the mean temperature is decreasing with the 

elevation. The catchments with the lowest temperature correlation are Usma and Nausta. A reason 

for that might be the use of different gauging stations during the interpolation or different 

assumptions about the elevation influence. Compared to the weather station, lower temperatures 

appeared to be slightly underestimated by seNorge2. There is a spread between weather station 

and datasets of about 10 °C. This is an uncertainty that might affect snow melt at around 0 °C. 

Nevertheless, it can be assumed that temperature data is a good estimation of the ground truth for 

both of the datasets, because of the high correlation. Additionally, it proves that both of these 

datasets can be used as input for hydrological models without having a high influence on the 

modelling results.  

Hourly precipitation has a much lower correlation than hourly temperature. This is first of all caused 

by the higher temporal and spatial variability of precipitation. When looking at daily precipitation, 

this effect decreases, because there is less spatial variability (Lussana et al. 2016a). The correlation 

decreases for snow. A reason for that might be the influence of wind-induced under catch that is 

corrected in NWP, but not  in seNorge2. Another reason might be attenuation of radar beams 

(NWP), measurement errors caused by delayed snow melt or snow drift in personal (NWP) or public 

(both) gauges. Compared to the weather station, hourly precipitation did not have a good 

agreement even so NWP is based on radar measurements that should have a better agreement 

with the hourly spatial variability of precipitation. This hints to the assumption, that the radar and 

numerical model information included in NWP is still not enough information to estimate hourly 

weather processes in a mountainous region (where the weather station is located). Interpolating 

gauge data is also not suitable for hourly estimates, because the spatial variability is too high 

compared to the scarce measurement network. It must be mentioned that these results cannot be 

applied for a general statement of the quality of the datasets, because it is only a case study at one 

specific point and not necessarily true in other locations. Still, it might give a hint about the quality 

of the models.  

 

At last, the precipitation amount estimated by seNorge2 and NWP was compared with inverse 

simulated precipitation data from discharge data. The results show that the inverse model always 

estimates the highest amount of precipitation. Although this might be the case, it is more likely that 
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there is an error in the precipitation simulation. A reason for that might be the small discharge 

fluctuations (caused by measurement errors) that get interpretated as precipitation from the 

inverse hydrological model. That way, small precipitation amounts are estimated over a long time 

which causes an increase of the precipitation sum. The only basin with a comparable precipitation 

amount between inverse model and NWP is in Gaulfoss. The reason for that might be that it is a 

large catchment and high discharge amounts, causing less fluctuations in the measured values. 

Because of the high overestimation of precipitation in some catchments, this evaluation method is 

not conclusive. Nevertheless, using a hydrological model was again applied for analysing individual 

events. It was assumed that there, the response of the basin is caused by precipitation and not by 

measurement errors or random fluctuations of discharge measurements. 

 

All in all, NWP precipitation is closest to the one assumed by looking at the water balance, seNorge2 

and radar data are underestimating it. Temperature data showed slightly better correlation with 

NWP but is in general in good agreement of both datasets and the weather station. Nevertheless, 

the spread of values has to be considered, especially for snow melt calculations. The correlation of 

the datasets decreases with higher elevations for most of the catchments. Hourly precipitation 

shows poor similarity to a ground observation near Usma. Daily precipitation has a better 

agreement. An inverse modelling approach did not lead to conclusive results when applied in a long 

time period.  

6.2 Conclusions from calibration experiments 
The calibration process is important for this study because both datasets and each catchment were 

calibrated individually. If the calibration result is to be considered variable for each run, the results 

and especially the modelling performance cannot be compared with each other, because they could 

depend on the calibration and its randomness.  

In a first step, two calibration methods were tested and compared. DEMC achieved better model 

performances in terms of KGE in calibration and validation  with a lower amount of simulations 

compared to the progressive Monte Carlo method. Furthermore, 9,000 simulations led to more 

stable results, especially in terms of validation. However, the method creates output files for each 

simulation that need a lot of computer storage. Additionally, the wall time of this method was 

higher than for progressive Monte Carlo that led to a lower model performance. The KGE increases 

with the number of simulations. Only calibrations with more simulations created stable 

performance results when repeating the simulation. This was also found out by Saldaña Espinoza 

(2022). 

Because of the better efficiency and performances achieved with DEMC, this method should have 

been chosen. Unfortunately, there was an error with the calibration parameter output. Here, the 

optimal parameter set was not written into respar.txt, but only into bestsims.txt. That’s 

why  the validation of this method originally led to low validation performances. It was assumed 

that because of the strong variance between each simulation step, the resulting parameter set was 

only suitable for that specific time period instead of the whole period (including the validation 

time). Progressive Monte Carlo wrote the best parameter set into respar.txt and was therefore 

applied correctly in the validation and originally resulted in a better validation performance. That’s 

why this method was applied in this study. The best results in terms of KGE and stability were 

achieved with 25,000 simulations per calibration. This turned out to be acceptable because testing 

DEMC at a later point showed that it did not improve the model performance compared to the 

stepwise calibration approach applied in this study. 
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Further analysis of calibration improvements led to a stepwise approach. Here, parameters were 

fine-tuned after an initial calibration and the stability of the results were tested. In the first tests of 

these methods and a smaller number of simulations in the initial calibration, high increases of KGE 

were achieved. Because there was a chance of biasing the model towards one specific process, the 

number of simulations was increased to 25,000 for the initial step. That way, already stable results 

are created that can be fine-tuned afterwards. Increasing the stability of the initial calibration led 

to a smaller improvement of KGE during the stepwise calibration. This confirms the law of 

diminishing, that says that the amount of work put into a production, will first increase up to a 

certain point, but after that the result will decrease (Shephard and Färe 1974). In the case of a 

calibration, the results are not decreasing, since the best simulation is saved. But still it can be 

compared that after a certain amount of work, the results cannot be increased, because an 

optimum performance is found.  

 

For multi-gauge catchments, using the median KGE of all gauges led to a lower performance in 

terms of KGE in general and especially in Gaua (KGE of 0.292). When calibrating the model with the 

median, the objective function can be minimized by creating suitable results only in four of the 

catchments, instead of all of them. This happened in Gaula, because three stations were not fitting 

as well as the other four. The median is not a good calibration strategy when interested in a good 

agreement in every of the sub-catchments, because it does not integrate all the stations and 

doesn’t take outliers into account. Using the average KGE improved this. Here, all gauges performed 

more or less equally and none of them had a KGE lower than 0.6, because the performance of all 

stations is included in the objective criteria. It should be mentioned that these tests were done with 

a small number of simulations (2,000) for each calibration. That’s why an optimum was not 

necessarily found. Still, the general behaviour of the objective functions can be seen. 

When excluding stations from the calibration and only calibrating a certain amount of them, the 

average KGE of all stations decreases (when using 2,000 simulations). It still must be mentioned 

that the decreases is acceptable, meaning that calibrating some gauges only can be a good method, 

when reducing computing effort plays a role. For the purpose of this master thesis (evaluating input 

datasets) this approach didn’t seem to be reasonable, because a good suitability of every station is 

of interest. When only calibrating one gauge, the number of simulations was increased. That way, 

better performances were achieved. An interesting finding is that calibrating smaller sub-

catchments and tributaries (Gaua, Lillebudal, Hugdal bru and Killingdal) resulted in a better 

performance for all stations than when calibrating downstream stations that get a lot of inflow from 

other catchments (Gaulfoss, Gaula ovf. Fora). A reason for that might be that calibrating the output 

of smaller sub-catchments is a better approach than calibrating the outflow of the whole catchment 

and applying these parameters for smaller sub-catchments. This leads to the assumption that it is 

better to go from a small scale to a wide scale than the other way around. Figure 31 shows a good 

example of that behaviour. When calibrating Gaua, a good performance of every station is achieved 

(especially Gaulfoss, which is the station most downstream). When however calibrating Gaulfoss, 

only stations directly in the Gaula river showed reasonable results, where as in contrast the 

tributaries perform rather poorly. Note that these assumptions are based on the KGE distribution 

and relative values. The absolute values should not be interpreted, because the number of 

simulations differ between Gaua and Gaulfoss. 

 

Finally, the connection between low flow conditions and the choice of input data was evaluated. It 

turned out that NWP has a worse agreement towards low flows than seNorge2. One possibility for 

that might be caused by a timing issue, when the precipitation data leads to simulated discharge 

peaks in observational low flow conditions. Another reason might be that seNorge2 was used to 

calibrate the soil thickness and therefore has a better agreement of the soil recession. It was 
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assumed that the poor performance of low flow simulation is caused by wrong assumptions about 

the boundary conditions. However, this could only be proved partly, by applying GLUE or changing 

them manually, by a small increase in the performance compared to the initial calibration. 

However, the parameters seemed not to converge against specific values during the calibration. 

6.3 Calibration results 
By calibrating the number of soil layers and their thickness (chapter 5.2.2) catchment characteristics 

could be taken into account. It can be assumed that for example higher elevated catchments with 

steep slopes have less or thinner soil layers, because they do not have slow recession curves and 

do not store a lot of water except for snow and lakes. When looking at the results in Table 12, this 

behaviour was found in Grunnåi. Although Rinna had the best performance with three soil layers, 

the performance was also agreeable with only one layer. This makes sense because Rinna (as a part 

of the Surna catchment) is also highly elevated. Every other catchment showed the best 

performance with three soil layers. One reason might be that three-soil layer increase the number 

of parameters (the ones that had to be added to simulate the third layer) and therefore improving 

the fit of the model. Another reason might be that a third layer increases the possibility to hold 

water back and increase the recession of the catchment.  

It must be considered that the chosen calibration method is not stable within each calibration (see 

Table 10). This means that results that do not vary strongly cannot safely be defined as the best 

result. Still, some KGEs vary more strongly with different soil layers, for example in Nausta. There, 

a dependence on soil characteristics and model performance can be assumed. Surna and Grunnåi 

do not vary that much in their performance. This might be caused by a lower sensitivity of these 

catchments towards soil characteristics. 

In the next step, the stream-depth was calibrated as well by varying it by 25 cm above and 

underneath the ground. The stream-depth divides groundwater into standing water and water that 

participates in the flow of the catchment. Every catchment showed the best performance when the 

stream-depth was similar to the soil ground, meaning there is no standing water inside the 

catchment. This could be physically explained by the lack of standing water in Norway but doesn’t 

make sense considering the high number of marsh-land-areas in the catchments. Another reason 

might be caused by the input data. When the precipitation amount is underestimated, the model 

automatically tends to include every amount of water into the discharge and doesn’t participate in 

evapotranspiration. This theory was tested by changing the input data product in Nausta to NWP 

and repeating the stream-depth calibration. In that case, the best performance was achieved with 

a stream-depth 25 cm above the ground. That’s why there seems to be a dependence between the 

precipitation amount and the best stream-depth performance. A possible reason for that might be 

that the precipitation quantity is higher and more water can be stored inside the catchment and 

evaporate. 

6.4 Model results 
In this section, the model results of each catchment and with different input datasets will be 

discussed. Using weather station data directly showed acceptable results in Usma, but had a low 

performance in Grunnåi. This low performance is caused by an underestimation of precipitation, 

especially in winter (see also chapter 6.5) probably caused by wind-induced under catch.  

Using seNorge2 as input data resulted in the best model performance during the calibration, except 

for Usma and Gaula. However, the performance dropped when calculating the KGE of the validation 

period. This decrease of KGE might be caused by an overfitting of HYPE towards erroneous data, 

that does not define the actual catchment and results in a lower KGE when applied to another time. 
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Analysing cumulative discharge volumes revealed that seNorge2 almost always underestimates the 

observed discharge volume, probably caused by an underestimation of precipitation in general, 

which was already detected when calculating the water balance equation of the catchments. 

NWP resulted in better performances during the validation period, even so there is a lower KGE 

than seNorge2 in the calibration, except for Usma and Gaula. Cumulative discharge sums revealed 

that the model calculated with NWP data is estimating to much discharge in Rinna and Nausta, but 

is in good agreement with observed discharge in Usma and Grunnåi. 

In a further step,  correction factors for snow (pcusnow) and rain (pcurain) were implemented in 

HYPE and added to the calibration. These factors add or decrease precipitation to the observations 

using a constant factor. Adding a correction to seNorge2 led to an improved of model performances 

except for Grunnåi. In Rinna, the correction of seNorge2 improved the KGE by 0.15, in Usma by 0.1. 

The performance of the validation was increasing as well. This means that correcting the input data 

creates more security towards other periods. NWP correction led to worse agreement of the 

cumulative volume sum compared to observations. It can be assumed that NWP in general is in 

better agreement with the actual quantity of the precipitation and doesn’t need a correction, 

especially a constant factor. It is even possible that correcting rain might cause errors, because an 

over- and underestimation can vary from event to event whereas the correction factor is applied 

constantly for all of them. Another interesting finding is that a precipitation correction does not 

necessarily increase the model performance. The reason for that is probably that the whole 

catchment is corrected by a constant factor, although the precipitation amount is not always over- 

or underestimating the discharge in a similar matter. 

Generally, it should be discussed whether precipitation correction with constant factors are an 

agreeable method to use in a hydrological model. As discussed in chapter 2.2, many measurement 

errors can cause uncertainty in the precipitation estimation. These errors are however often not 

constant over time and space. For example for precipitation gauges, wind speed plays an important 

factor for under catch. This process is not constant, because wind speed is variable over space and 

time. Another uncertainty is the spatial variability of precipitation, which can also not be accounted 

for with a constant factor, which was seen in Gaula, where adding a constant factor to the whole 

catchment did result in a poor agreements with the water balance in some of the sub-catchments. 

Additionally, the boundaries during the calibration of these factors should be discussed in more 

detail. This study assumed that precipitation can be decreased or increased by up to 50 %. However, 

Wolff et al. (2015) stated that snow can be underestimated by up to 80 % for unshielded gauges. 

Another question might be whether precipitation can actually be overestimated by the datasets. In 

terms of radar data, an overestimation might be caused by bright bands, a wrong Z-R relation or 

attenuation correction factors. Gauge data can be overestimated by systematic errors. Whether 

these errors should have the same range as underestimation needs to be further discussed. 

 

Some model results did not seem to be strongly influenced by the choice of input data, but are 

anyway worth mentioning here. The first finding was a decrease of model performance in the 

winter month in almost all catchments. A reason for that might be the snow melt model of HYPE. 

There are different models available, but most of them are meant for a daily timestep. Only snow 

scaling can be applied to the hourly model instead of the default. This model option was tested for 

one catchment but did not result in a much better performance in winter. That’s why it was not 

applied in this study.  

Another reason, besides a model uncertainty, might be that temperature data has a higher 

influence in winter than in summer, because temperature is the main factor of snow melt (SMHI 

2021). An error in the temperature data might be the reason for a poor performance in winter. 

Temperature data is known to be more accurate because of the lower spatial variability. 

Nevertheless, a bias in the temperature data around the melting temperature might be a source of 
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error. Another reason of poor model performances in winter might be caused by measurement 

errors in winter, for example precipitation measurements tend to be less accurate for snow, 

because of wind influences near gauges or wrong estimated Z-R relations of radar data. That might 

cause erroneous precipitation data that is not able to simulate the snow melt after it accumulated 

over winter. Another measurement error could be in the discharge data. In Norway, river tend to 

build ice during winter. That might cause errors when measuring the water level. Another 

uncertainty might be that low flows are dominant during winter which are usually underestimated 

by the model. This will also be discussed in this chapter.   

Nausta however did not loss its model performance during winter. This can be explained by the fact 

that Nausta is located in the Atlantic regime (Gottschalk et al. 1979) and is more influenced by 

precipitation and evapotranspiration rather than snow melt. 

 

Another finding was the underestimation of low flows in most catchments, especially in Nausta, 

Grunnåi, Gaula and Surna. In these catchments, none of the datasets show a better agreement 

compared to the other. That’s why it can be assumed that the low flows do not mainly depend on 

the input data, but are influenced by another source within the model. A reason for the 

underestimation was however not found in this study. 

 

It can be concluded that seNorge2 often achieves a better model performance than NWP, however, 

the validation performance is usually lower. The model performance improved even more when 

using a correction factor for seNorge2. This leads to the assumption, that the data is not wrong in 

general, but has a measurement bias (for example wind-induced under catch) leading to an 

underestimation of precipitation. However, adding a constant factor to the measurement is a 

strong simplification. The decrease of KGE in the validation period might be caused by an overfitting 

of the model, meaning that the input data is not correct, but the model is just using unrealistic 

estimates, that do not work for another time period. Furthermore, the precipitation correction 

factors might not be time independent. In that matter, stable NWP results seem to be more reliable. 

Using different datasets as input led to a wide spread of simulated discharge, especially in small 

scale catchments like Usma and Grunnåi. This is in agreement with Bárdossy et al. (2022), where 

precipitation data was considered to have a high influence on the uncertainty of a hydrological 

model. 

6.5 Water balance 
Looking at the water balances of the modelled results helped to evaluate how HYPE handles the 

different input datasets. It was found that HYPE compensates precipitation underestimation by 

estimating a low amount of evapotranspiration to avoid water loses out of the catchment. This 

happened in every catchment when using seNorge2 as input data. This could also be explained 

physically, because there is no actual evapotranspiration when no water is available in the system. 

However, the catchment are known to have marsh areas and should therefore not be dry during 

summer. 

Because the lack of water is compensated by the evapotranspiration, seNorge2 simulates a similar 

amount of discharge compared to the measurements in Nausta and Grunnåi. In Usma and Surna, 

even decreasing the evapotranspiration is not enough to match the observed discharge volume. 

The corrected seNorge2 version improves the water balance by adding more water into the 

catchment. With that, the model results are closer to the observed values in terms of volume. Even 

the evapotranspiration gets closer to MOD16 values, except for Grunnåi, where the 

evapotranspiration doesn’t change. SeNorge2 does not lead to a storage change within the model, 

but when calculating the storage change with measured discharge, there is a strong decrease of 
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storage in Usma and Surna (Rinna). When looking at the seasonal changes, it becomes clear that 

seNorge2 always underestimates the discharge, especially in winter. Except for Grunnåi, where 

seNorge2 is higher in August and September. Correcting seNorge2 does not lead to a better 

suitability, because the differences vary between the months (sometimes over-, sometimes 

underestimating), except for Nausta, where the measured discharge amount is in good agreement 

with the model using a correction factor with seNorge2. 

 

NWP is overestimating the discharge in Nausta and Surna. The evapotranspiration amount is close 

to MOD16. This shows that when enough water is available in the catchment, the model calculates 

more evapotranspiration. A complete overestimation of AET is not possible, because it is bound by 

the PET calculated with Hargreaves. This may also explain the water storage increase in Usma and 

Nausta within the model. Here, the precipitation amount could not be compensated by 

evapotranspiration and discharge and led to an increase of water storage within the modelled 

catchment. This storage changes were described in chapter 5.3.3.3. In Usma, the water accumulates 

through the river, probably caused by a high dampening effect leading to unrealistic water 

accumulations in the main river. A reason why these accumulations might be possible is because of 

the relatively small time period where these storage changes can already be seen but will not have 

as much influence as in a later timestep. In Nausta, water is accumulated by snow in the mountains, 

that is not fully melting during the year. A reason why that happens in Nausta might be that NWP 

estimates more precipitation in the upper catchment compared to the lower basin (see Figure 59). 

Maybe the high amount of precipitation in the higher elevated areas led to the accumulation of 

snow in the upper catchment. When looking at seasonal changes, the model with NWP appears to 

also have a good seasonal agreement with MOD16. In most catchments, NWP leads to 

overestimating the discharge amount of the spring melt which might be caused by an 

overestimation of snow during winter. E.g., in Surna, the difference between measured and 

simulated discharge is variable between the months (e.g. overestimated in August and 

underestimated in September). 

 

At last, weather station data was included in two catchments (Usma and Grunnåi). They both 

seemed to underestimate the precipitation amount and led to an underestimation of discharge 

volume. This was especially high in Grunnåi. The precipitation amount is especially low in winter, 

probably caused by wind-induced under catch of snow. Another reason might be that weather 

station data is not spatially available and changes of precipitation because of elevation were not 

considered. 

 

The evaluation of the water balance in Gaula showed that seNorge2 is underestimating the 

precipitation amount in all catchments which is compensated by HYPE through low 

evapotranspiration. NWP is sometimes over- and underestimating the precipitation. When 

precipitation is overestimated, some models started accumulating water in the catchment’s 

storages. Correction factors improved the annual water balance, but showed under- and 

overestimations when looking at seasonal changes.  

6.5.1 Comparison evapotranspiration MOD16 and Hargreaves 
This section is going to analyse the evapotranspiration calculated from Hargreaves. Hargreaves only 

needs the minimum and maximum daily temperature as well as the latitude for the calculation. By 

using seNorge2018, an independent dataset was applied with data available over the whole time 

period. Using this extra data source might be an unnecessary extra step but was found to be very 

useful because evapotranspiration is an important part of the water balance. Especially considering 
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that this study found out that HYPE tries to avoid water accumulation within a catchment by 

adapting the evapotranspiration amount. That’s why the model would calibrate the 

evapotranspiration depending heavily on precipitation (depending on whether it over- or 

underestimates the water amount). By creating boundaries with PET, an overestimation of 

evapotranspiration was avoided. Calculating AET could also improve that, but it depends on the 

water availability within the catchment and is more meaningful when calculated within the model. 

Comparing MOD16 PET with Hargreaves, showed that Hargreaves always estimated lower 

amounts. This does however not mean that the calculated PET is underestimated, because it is 

known that MOD16 tends to overestimate PET in Norway  (Huang et al. 2019). Comparing PET from 

Hargreaves with AET from MOD16 showed that the estimated PET is still higher than AET estimated 

by MOD16. That is a good sign, because it can be interpretated as if HYPE has the possibility to 

simulate the same amount of AET than measured by MOD16 when enough water is available and 

that the PET boundary is not underestimating the AET from MOD16. 

From the previous result, we already saw how important the evapotranspiration in the model is, 

because it is used to balance the available water amount in the catchment. If this is not possible, 

the storage volume increases. It was an important step to apply PET as an additional model input, 

because otherwise (when the PET parameters would have been calibrated) the model would have 

probably reacted with high evapotranspiration amounts when precipitation is too high. This is what 

it did with underestimated precipitation as well.  

6.6 Events 
After looking at the models in general, selected events were further analysed. At first, three events 

where the discharge peak was not simulated were shown. NWP was missing precipitation data in 

one event, seNorge2 at two other events. To check whether the model was not reacting 

appropriately to the discharge, an inverse modelling approach was applied that estimated the 

actual precipitation amount using discharge data. In some cases, this showed that the precipitation 

was comparable for both datasets, but the model response wasn’t (Figure 94), in other cases 

precipitation was missed or underestimated (Figure 40). That seNorge2 especially missed 

convective events seems reasonable, because it is only based on point data, that is more likely to 

miss convective, small scale precipitation cells. This was the case in Usma in July 2015 (Figure 40). 

NWP, that includes radar data, measured this convective cell. Nevertheless, this did not lead to a 

better model fit, which might be caused by a model uncertainty. Another reason might be that the 

precipitation amount from  W  wasn’t high enough because there was more precipitation volume 

assumed by the inverse modelling approach. This event is especially interesting, because even the 

weather station, located 30 km away from the catchment, did not observe the precipitation. That 

radar can have an advantage compared to gauges for small scale events was also shown in Reinemo 

(2012). 

 

Another reason for missed discharge peaks in the models is temperature and snow melt. Two 

events with that behaviour were shown (Figure 95 and Figure 96). Here, the reason for a mismatch 

with observations could be erroneous temperature data, leading to a lack of snow melt, that was 

actually higher than assumed. Another reason might be that snow melt also depends on radiation 

and albedo effects (at least for old snow, that is dirty and has therefore a lower albedo), which is 

not considered by the model and could lead to a snow melt within the catchment even with 

temperatures below 0 °C. Another possibility might be that the discharge increases might be caused 

by unnatural discharge changes, e.g. through hydro power plants. This should however not be the 

case because the catchments are considered to be unregulated. 
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The last finding are events with discharge peaks calculated by the models that were not measured 

in reality (Figure 97). In one of the events seNorge2 estimates a high precipitation amount, although 

there was barely any reaction from the catchment. This might be caused by a precipitation cell over 

a nearby located weather station, that was included in the interpolation of seNorge2, and led to a 

wrong estimation on what happened inside the catchment. Another reason might be that the 

model used with seNorge2 is more likely to react stronger with precipitation, because this product 

is usually underestimating the water amount. In another event, NWP estimated precipitation 

leading to a wrongly simulated discharge peak, that wasn’t simulated using seNorge2 (Figure 98). 

 

To summarize this chapter, it can be said that differences between simulated and observed 

discharge can have various sources. Here, events were shown where simulated discharge differed 

from observed discharge because of wrong precipitation estimation (over-, underestimation or 

completely unmeasured precipitation cells),  temperature or modelling errors. 

6.7 Sensitivity analysis 
The last part of this analysis was an evaluation of the sensitivity of the models for both datasets and 

the parameters. GLUE was applied to test the equifinality and to find sensitive parameters. The 

results showed a wide spread of some parameters visualizing the equifinality of the model. Some 

parameters were more sensitive than others. For example, the parameter rivvel (celerity of flood 

in watercourse) had similar values in each calibration and not a wide spread. This means that this 

parameter is very sensitive and always lead to a convergence on one specific value. Other examples 

of similar behaviour are pcurain (under catch correction for rainfall), pcusnow (under catch 

correction for snowfall) and damp (fraction of delay in the watercourse which also causes damping). 

These values are less sensitive in Nausta, which might be caused by a less sensitive catchment in 

general, maybe caused by the catchment size. 

Other parameters were found, that did have variable values for each run, but had only a small 

spread of values within the best five results of each run. These parameters can be interpreted as 

sensitive within the calibration, but are influenced by a combination of parameters. An example for 

that are the lake parameters grata, gratp and gratk (parameters of rating curve for lake outflow). 

All of them are applied to describe the lakes storage-discharge relation. There are different 

combinations possible, that all describe an equal relationship and are more sensitive within the 

combination than in only one specific value. Other parameters with that behaviour are cmelt 

(melting parameter for snow ) and ttpd (threshold temperature for snow-/rainfall), which can also 

be seen as a combination, because the snow melt is depending on the temperature threshold and 

a snow melt factor. 

The last category are parameters that did not even converge within a calibration yet alone with 

each run. These parameters must be very unsensitive because they do not converge at all. An 

example of that is cevp (evapotranspiration constant). This parameter would probably have a higher 

influence if   T wouldn’t already be included into the model as input data. Other parameters like 

that might also just have a small influence on the output or maybe the number of simulations was 

not high enough for these parameters to convergence. This unsensitivity can mostly be seen on SLC 

dependent parameters. A reason for that might be that the catchments are too small to create a 

reasonable assumption of land use dependent parameters. A combination of catchments might 

create more reasonable results. 

To test whether the parameters converge against the defined boundary conditions, the parameters 

where normalized and visualized as well. It turned out that there were no parameters that 

converged to the boundary conditions, except for pcusnow and rivvel. Because rivvel was 

converging against zero, a change of boundaries is not necessary. SeNorge2 calibrations often 
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achieved pcusnow values close to 0.5 (maximum boundary). This shows how strongly snow is 

underestimated by this product. Furthermore, the parameter space of the two datasets was 

compared. In Grunnåi, most parameters were assumed in an equal range by both datasets. 

Differences are especially found in pcusnow and pcurain, which seems reasonable considering that 

they are dependent on precipitation data. Another parameter is deepmem, which describes the 

memory of the soil. SeNorge2 converges to higher values here. This makes sense considering that 

seNorge2 tends to underestimate precipitation and keeps water in the soil longer to better assume 

discharge peaks in the next precipitation event. 

 

After analysing the parameter space and equifinality, the influence of the calibration period was 

evaluated by switching calibration and validation periods. In all catchments, there was a difference 

in the KGE when switching the calibration and validation period. This means that none of the 

models calculates results that can be uniformly applied to another time without a decrease or 

change in their performance. However, some results varied more strongly than others. In Nausta, 

a model with seNorge2 originally had a higher decrease in the validation period. When switching, 

the validation performance increased drastically. This might be a coincidence from the calibration. 

Another possibility is that the calibration of period 2 is a better representative than period 1. NWP 

in Nausta leads to stable results during calibration and validation, even with changed periods. It can 

be assumed that both datasets are assuming precipitation data correctly here.  

The difference is higher in Grunnåi. SeNorge2 leads to a strong decrease of performance in the 

validation, also when changing the periods. It can be assumed that the model is overfitted for that 

catchment and creating a good performance during the calibration, that is however not appliable 

for other periods. NWP in Grunnåi leads to more stable results. This proves, that HYPE is able to 

model this catchment and it can be assumed that the main source of error in the seNorge2 model 

is the input data. In Rinna, the same findings were seen, except here, NWP is the input data that 

created to unstable results. By calculating a double sum curve, the reason behind this behaviour 

was found. Depending on the chosen time period, the correction factor of precipitation changes. 

This means the value is not constant over time. In Rinna, it seems like the correction factor is more 

influenced by the time with NWP than seNorge2, because the precipitation amount is changing 

more with that product. 

 

In the final step, parameter results were evaluated. The rain correction factor varies in each 

catchment and dataset. SeNorge2 is almost always close to zero or above zero, meaning that the 

rain is underestimated and is increased in the model. This is also the case for snow correction. This 

makes sense, because as discussed in the mass balance of the catchments, seNorge2 is 

underestimating precipitation in every basin. That snow correction is higher than rain is reasonable 

considering that wind-induced under catch has a higher influence on snow than on rain. Rain and 

snow correction of NWP as a model input resulted in positive and negative correction factors 

depending on the catchment. That the under- and overestimation of precipitation with NWP is 

varying with each catchment was also detected in the mass balance analysis (chapter 5.1.4). 

Another comparison was done with the river velocity. The results show that this parameter is 

varying in each catchment but does also depend on the input dataset. The maximum velocity is 

3 m/s which is high and unrealistic for a catchment like Nausta. A reason for high river velocities 

might be that the catchment reacts fast to precipitation events and the model tries to balance that 

with high velocities. Because the river velocity is behaving unrealistically, it can be assumed that 

the river velocity is compensating another process. The reason might be the input data, because 

the value changes when using different datasets. That the river velocity cannot be explained 

physically can also be seen when the catchment slope is compared to the parameter value, because 

in a realistic system, these values should be correlated. However, this was not detected. 
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Another parameter that represents a physical process is the snow melt factor cmelt. This value is 

SLC dependent. It can be expected that the parameter represents the characteristic of these land 

uses. However, the parameter varies depending on the dataset and catchment. In Beldring et al. 

(2003), a parameter estimation for Norway was done using a HBV model. Snow melt factors for 

different land uses were estimated. Here, the forests had a value, depending on whether they are 

high or low elevated between 0.16 and 0.1 mm/°C/hour. Mountainous areas had a snowmelt factor 

of 0.14 mm/°C/hour. These values are in a same area as the calibrated values from HYPE (they are 

between 0.09 and 0.4), but do not have the same land use characteristics. The factor does also 

depend on the input dataset. This can be seen in the mountain SLC, where high values are assumed 

with seNorge2 and lower values with NWP. In other SLCs, the values are more similar, for example 

in the Urban/Agriculture SLC. According to Beldring et al. (2003), the snow melt factor is the highest 

in mountain areas as well as high elevated forests. That is in agreement in Usma and Rinna, but not 

for the other catchments. This makes sense, because these catchments have high elevated forest 

areas, whereas the other catchments mostly have forest SLCs in lower elevated areas. It can be 

concluded that there might be some physical truth behind the parameters, but because they were 

calibrated for only one catchment, they probably not always converge to the actual characteristic 

of the SLC. 

 

This sensitivity analysed evaluated different model uncertainties, caused by calibration, 

precipitation data, choice of calibration period and possible overcompensations of parameters as 

well as unrealistic values. This chapter discussed their possible influence on the model results. To 

compare the uncertainty of the model with uncertainty of the input data, the sensitivity analysis 

should be further researched.  
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6.8 Summary 
This chapter summarizes the findings when comparing seNorge2 and NWP in general and using 

them as input data in HYPE. Table 16 provides an overview over the results of this study. 

 

Table 16: Comparison of results from this study with seNorge2 and NWP 
 seNorge2 NWP 

General 

Annual precipitation amount is 
underestimated in each catchment 

Annual precipitation amount is 
sometimes over- and underestimated 

Low correlation to hourly weather station data 

Temperature has a negative bias towards the weather station near Usma 

Higher difference to other dataset with hourly precipitation and for 
temperatures below 5 °C 

Model 
results 

Higher KGE during calibration in 
Nausta, Rinna, Gaula and Grunnåi 

Higher KGE during calibration in Usma 

Higher KGE during validation in 
Gaula 

Higher KGE during validation in Nausta, 
Rinna and Grunnåi 

Low flow underestimation in most catchments 

Water 
Balance 

Underestimation of precipitation in 
every catchment 

Varying precipitation amount  

Low AET amount AET comparable with MOD16 data 

Discharge volume underestimation 
in Usma, Surna and Gaula 

No underestimation of discharge 
amount 

No storage accumulation in 
catchment 

Accumulating water storage in Usma 
and Nausta 

Precipitation especially 
underestimated in winter 

Precipitation overestimated in winter 
for example in Grunnåi  

Events 

Some precipitation events were not 
measured at all 

Most events were measured, but not 
necessarily correctly 

Some events were wrongly 
measured as precipitation 

Some events were overestimated 

Temperature errors or other uncertainty sources led to differences between the 
simulated and observed discharge 
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7 Conclusions  
The aim of this thesis was to evaluate different precipitation products and test them as input into 

HYPE. This was done by setting up a HYPE model in five catchments and calibrating them with a 

stepwise calibration using these datasets. The results were analysed by performance, water balance 

and evaluating individual events. At last, a sensitivity analysis was done for two of the catchments. 

Radar data was analysed initially, but because of a high degree of beam blockage and attenuation 

in some of the catchments, it was not included in the model set-up. This seemed reasonable, 

because another product (NWP) including radar data is available. It is a combination of gauges 

(personal and public), radar data and a numerical weather prediction model as the background of 

a Bayesian interpolation method. According to the water balance, NWP sometimes overestimates 

precipitation and sometimes underestimates it. Hourly data was not in good agreement with gauge 

station data and also has low agreement with seNorge2 data. When applying NWP as input to HYPE, 

the calibration results were often suitable, but did not outperform other datasets. Nevertheless, 

the results appeared to be more stable. Furthermore, the modelled evapotranspiration had the 

best agreement with MOD16 estimations. In some catchments, using NWP led to an accumulation 

of water within the model, probably to even out precipitation overestimation. SeNorge2 is based 

on interpolated rain gauge data. In every catchment, it underestimates the precipitation amount. 

Looking at the water balance showed that this underestimation was especially high in winter. The 

same thing was found for weather station data. A reason might be wind-induced under catch of 

precipitation, that is higher for snow than for rain and therefore led to an underestimation. This did 

however not change a good performance during the calibration, it had however a negative effect 

on validation.  

Some precipitation events discussed in this study showed an advantage when using radar-derived 

data, because small scale precipitation events were found, where weather station data was not 

able to measure it. However, the precipitation amount was often under- or overestimated by NWP 

or the model didn’t react to the precipitation correctly. 

Having a semi-distributed hydrological model over a wide scale, as HYPE is set-up in Norway, is a 

good possibility to evaluate gridded precipitation datasets by simulating the discharge of a 

catchment and comparing water balances. However, HYPE is complex and highly parameterized 

and therefore model uncertainties have to be analysed and taken into account. Another challenge 

was calibrating the model in an accurate way to create reproduceable results when calibrating the 

catchments with different datasets. This was especially complicated in Gaula with more than one 

discharge gauge, because the calibration is supposed to be unbiased towards the location. This is 

not the case when for example precipitation data might be biased differently depending on the 

position.  

When testing the sensitivity of the model with GLUE, parameters were found, that are sensitive, 

sensitive towards certain combinations and not sensitive at all. It is possible that a higher number 

of simulations is necessary to optimize these values but that would have taken a lot of computing 

effort. When switching calibration and validation periods, some input data results showed 

instabilities. This was the case for seNorge2 in Grunnåi and NWP in Rinna, meaning that both 

datasets seem to have created unrealistic calibration results in different catchments.  The rain and 

snow correction factor calibrated in HYPE is different in each catchment. However, it was always 

above zero for seNorge2, which agrees with the results of the mass balance.  

This study applied different methods to evaluate precipitation data and their behaviour in 

hydrological models. No dataset seemed to dominate the other, but often seemed to estimate 

more realistic results.  
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8 Outlook 
This study covered different approaches of precipitation dataset evaluation, but led to new 

questions and research approaches that could be a follow-up of this thesis. 

Looking at Norwegian radar data showed the high number of error sources. Some of these effects 

could be decreased by a higher density of radar station. Especially beam shielding effects, 

attenuation and the height of the radar beam at wider ranges could be improved by that. A new 

radar station is already planned which will hopefully improve the datasets, although it will be 

challenging to find locations in the mountainous area that are not heavily affected by shielding 

(Lusanna 2022, personal communication, 10th March). 

Other possibilities to improve radar data should be further explored. Besides combining reflectivity 

with temperatures, other methods to estimate the Z-R relation should be considered, because using 

Marshall and Palmer (1948) for rain rate estimation is another uncertainty. 

In Gaula, a good model performance was achieved when only calibrating the small sub-catchment 

Gaua. Although these results might just be random, further tests should be done to see whether 

that can be repeated. A possibility for that is in the Surna catchment, when other data sources 

become available. 

To increase the number of hourly precipitation gauges, a disaggregation of daily data could be 

considered. In Müller and Haberlandt (2018) daily precipitation data is disaggregated into 5 min 

and 1 h timesteps. This was done by dividing timesteps into smaller timesteps and distributing the 

precipitation data with a certain probability in a cascade model. Hourly data showed good 

agreement with observations. The advantage here is that there are more daily weather stations 

available than hourly gauges. 

For further improving HYPE, limiting the model complexity and decreasing the number of 

parameters is suggested. A possibility is to define uncertain parameters using expert knowledge or 

other research. That way the calibration might be more reproducible. Because the river velocity 

had some unrealistic values in some calibrations, it might be useful to limit this parameter further, 

for example by considering catchment characteristics. Another calibration strategy could be applied 

by combining the automatic calibration with the validation performance in an iterative way. 

Furthermore, HYPE simulation results could be compared to another model that uses more 

simplistic approaches to test the advantage of the model complexity. A possible model could be the 

modelling framework RAVEN, where the flexibility of a model can be adjusted and specific 

processes portrayed individually (http://raven.uwaterloo.ca/).  

During the annual HYPE conference in 2022, a new model option was introduced. Ensemble based 

Kalman Filters can now be included into the model. That way, uncertainties and inaccuracies of 

input data can be considered and spatially integrated. A catchment like Gaula showed that spatial 

variability of input bias is important and should be considered in further analysis. 

Another possibility might be to use the approach from Bárdossy et al. (2022) and apply inverse 

hydrological methods to iteratively calculate the precipitation amount of a catchment and 

correcting already available datasets with that knowledge, or at least get an better knowledge 

about their uncertainty. 

 

http://raven.uwaterloo.ca/
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Figure 46: HYPE flow chart, figure from SMHI (2021) 
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A.1 Model folder structure and file examples 
HYPE is a text-file based model that only consists of an executable file (HYPE.exe). The rest of the 

files are text files specified for the catchments. Filedir.txt defines the working dir of the 

model. GeoClass.txt contains information about the properties of the SLCs. It combines the 

specification of special classes (for example olakes and ilakes) as well as soil layer properties for 

each SLC. GeoData.txt defines the characteristics of each sub-basin. It contains geographic 

properties like mean elevation, slope and river length. The fractions of SLCs are defined there. 

Info.txt defines all the model properties. It includes the definition of start and end date, 

calibration settings, model settings and required output files. In LakeData.txt manual lake 

parameters can be defined (e.g. relating to volume and rating curve). Optpar.txt defines the 

boundaries of parameters during the automatic calibration, whereas par.txt contains the actual 

parameter values when the parameters are not calibrated. Observational data is saved in separate 

text files. Pobs.txt contains precipitation data, Tobs.txt temperature, Qobs.txt discharge 

and Xobs.txt can contain different observations, for example evapotranspiration, radiation or  

snow water equivalent. These files are shown in Figure 47. 

 

 
Figure 47: Screenshot of example HYPE folder  
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A.2 HYPE parameters 
Table 17: Hype parameters description and their boundaries and step size for the calibration, 

descriptions from SMHI (2021) 

Name Description Min Max Step size 
Number 
of steps 

ttpd 
deviation from ttmp for threshold 

temperature for snow-/rainfall 
-2 2 0.05 80 

ttpi 
half of temperature interval with 

mixed snow- and rainfall. Interval is 
(ttmp+ttpd) +/- ttpi. 

0.05 2 0.025 78 

deepmem deep soil temperature memory 10 300 2 145 

cevpam 
amplitude of sinus function (about 1) 

that corrects potential 
evapotranspiration. 

0.5 1.5 0.01 100 

cevpph 
phase of sinus function that corrects 

potential evapotranspiration 
30 180 1 150 

lp 
factor for calculating the soil water 

limit for potential 
evapotranspiration 

0.85 1 0.001 150 

epotdist 
coefficient in exponential function 
for potential evapotranspiration's 

depth dependency 
0.1 10 0.1 99 

sdnsnew 
density of new-fallen snow (former 

snowdens0) 
0.05 0.3 0.0025 100 

snowdensdt increase of snow density per day 0.0005 0.003 0.000025 100 

fsclim 
limit of fractional snow cover area 

for onset of snowmax 
0.0001 0.001 0.00001 90 

fsckexp parameter for snowmax 0.000001 0.0002 0.000002 100 

rrcs3 
recession coefficient for slope 

dependence (upper layer) 
0.0001 0.05 0.0005 100 

wcfcN* 
fraction of soil available for 

evapotranspiration but not for 
runoff, for Nth soil layer 

0.05 1 0.01 95 

wcwpN* 
wilting point as a fraction, for Nth 

soil layer 
0.01 0.5 0.005 98 

wcepN* 
effective porosity as a fraction, for 

Nth soil layer 
0.001 0.5 0.005 98 

mperc1* 
maximum percolation capacity from 

soil layer 1 to soil layer 2 
5 150 1 145 

sfrost* frost depth parameter 0.1 1 0.01 90 

rrcs1* 
recession coefficient for uppermost 

soil layer 
0.01 1 0.01 99 

rrcs2* 
recession coefficient for lowest soil 

layer 
0.01 1 0.01 99 

srrate* fraction for surface runoff 0.01 0.5 0.005 98 

macrate* fraction for macro-pore flow 0.01 0.5 0.005 98 

mactrinf* threshold for macro-pore flow 1 150 1 149 
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mactrsm* 
threshold soil water for macro-pore 
flow and surface runoff (fraction of 

wcwp+wcfc in uppermost layer) 
0.01 1 0.01 99 

cmlt* melting parameter for snow 0 0.5 0.005 100 

ttmp* 
threshold temperature for snow 

melt, snow density and 
evapotranspiration 

0 2 0.02 100 

cevp* evapotranspiration parameter 0 0.1 0.001 100 

frost* frost depth parameter  0.5 1 0.005 100 

srrcs* 
recession coefficient for surface 

runoff (fraction), set to 1 for lakes 
0.01 1 0.01 99 

surfmen* 
upper soil layer soil temperature 

memory 
1 150 1 149 

ttrig* 
temperature threshold for soil 

temperature control on soil 
evapotranspiration 

-1 3 0.05 80 

treda* 
soil temperature control on soil 

evapotranspiration 
0 1 0.01 100 

tredb* 
soil temperature control on soil 

evapotranspiration 
0.5 2 0.015 100 

fscmax maximum fractional snow cover area 0.5 1 0.005 100 

fsck1 parameter for snowmax 0.05 0.5 0.005 90 

fsceff 
efficiency of snow cover to influence 

snow melt and snow evaporation 
0.01 0.9 0.01 89 

fscdistmax* maximum snow distribution factor 0. 5 1 0.005 100 

fscdist0* minimum snow distribution factor 0.4 0.8 0.005 80 

fscdist1* 
std coefficient for snow distribution 

factor 
0.0001 0.005 0.00005 98 

depthrel* 
depth relation for soil temperature 

memory 
0.01 5 0.05 100 

rivvel celerity of flood in watercourse  0.01 3 0.03 100 

damp 
fraction of delay in the watercourse 

which also causes damping 
0.01 1 0.01 99 

deadl 
parameter to calculate the dead 
volume in the local watercourse 

0 10 0.1 100 

deadm 
parameter to calculate the dead 
volume in the main watercourse 

0 10 0.1 100 

gratk 
parameter of rating curve for lake 

outflow 
10 150 1 140 

gratp 
parameter of rating curve for lake 

outflow 
0.5 4 0.05 70 

grata 
parameter of rating curve for lake 

outflow 
0.001 10 0.1 100 

gldepi depth for all ilakes 1 100 1 99 

gicatch 
fraction of local runoff that goes 

through the local lake (ilake) 
0.01 0.5 0.005 98 

pcurain 
under catch correction for rainfall, 

rainfall = rainfall*(1+pcurain). 
-0.5 0.5 0.005 200 

pcusnow 
under catch correction for snowfall, 
snowfall = snowfall*(1+pcusnow). 

-0.5 0.5 0.005 200 

*Parameter is calibrated for each SLC separately 
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B Additional information about the material  

B.1 Study areas 

 
Figure 48: Locations of glaciers near the Nausta catchment (NVE Atlas) 

 

 
Figure 49: Location of three glaciers in the Rinna catchment (NVE Atlas) 
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Figure 50: SLCs of the Gaula catchment 

 

 
Figure 51: Seasonal mean course of the temperature, precipitation and discharge (measured in 

Gaulfoss) in a time span of 20 years (2000-2020) in Gaula. Data: seNorge2018 daily 
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Figure 52: SLCs of the Usma catchment 

 

 
Figure 53: Seasonal mean course of the temperature, precipitation and discharge in a time span of 

20 years (2000-2020) in Usma. Data: seNorge2018 daily 
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Figure 54: SLCs of the Surna catchment 
 

 
Figure 55: Seasonal mean course of the temperature, precipitation and discharge in a time span of 

20 years (2000-2020) in Rinna. Data: seNorge2018 daily 
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Figure 56: SLCs of the Grunnåi catchment 

 
Figure 57: Seasonal mean course of the temperature, precipitation and discharge in a time span of 

20 years (2000-2020) in Grunnåi. Data: seNorge2018 daily 
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B.2 Data origin 
 

Table 18: Summary of applied datasets in this study and their access 

 Source 

seNorge2 hourly 
temperature 

Lussana et al. (2016b) 
https://thredds.met.no/thredds/catalog/senorge/seNorge2 

(10.12.2021) 

NWP hourly temperature 
Nipen et al. (2020) 

https://thredds.met.no/thredds/catalog/metpparchivev2 
(10.12.2021) 

seNorge2018 daily 
temperature 

Lussana et al. (2019b) 
https://thredds.met.no/thredds/catalog/senorge/seNorge_2018/ 

version_18.12/Archive/catalog.html (10.12.2021) 

seNorge2 hourly 
precipitation 

Lussana et al. (2016b) 
https://thredds.met.no/thredds/catalog/senorge/seNorge2 

(10.12.2021) 

NWP hourly precipitation 
https://thredds.met.no/thredds/catalog/metpparchivev2 

(10.12.2021) 

seNorge2018 daily 
precipitation 

Lussana et al. (2019b) 
https://thredds.met.no/thredds/catalog/senorge/seNorge_2018/ 

version_18.12/Archive/catalog.html (10.12.2021) 

Raw Radar precipitation 
https://thredds.met.no/thredds/catalog/remotesensingradaraccr/ 

catalog.html (10.12.2021) 

KliNoGrid precipitation Lussana et al. (2016a) 

Discharge NVE 
https://sildre.nve.no/map?params=1001&maxAge=-

1&showDisused=true&x=422726&y=7310225&zoom=13&lang=en 
(10.12.2021) 

Evaporation product 
MODIS 

https://earthdata.nasa.gov/ (17.03.2022) 

Land use 
https://land.copernicus.eu/pan-european/corine-land-cover/clc-

2012?tab=metadata (10.12.2021) 

Geodata of lakes, rivers, 
location of gauges and 
hydropower in Norway 

NVE data base https://nedlasting.nve.no/gis/ 

Catchment delineation Schönfelder and Baclet (2022) 

Digital elevation map 
https://kartkatalog.geonorge.no/metadata/dtm-50/e25d0104-

0858-4d06-bba8-d154514c11d2 (10.12.2021) 

 

https://thredds.met.no/thredds/catalog/senorge/seNorge2
https://thredds.met.no/thredds/catalog/metpparchivev2
https://thredds.met.no/thredds/catalog/senorge/seNorge_2018/%20version_18.12/Archive/catalog.html
https://thredds.met.no/thredds/catalog/senorge/seNorge_2018/%20version_18.12/Archive/catalog.html
https://thredds.met.no/thredds/catalog/senorge/seNorge2
https://thredds.met.no/thredds/catalog/metpparchivev2
https://thredds.met.no/thredds/catalog/senorge/seNorge_2018/%20version_18.12/Archive/catalog.html
https://thredds.met.no/thredds/catalog/senorge/seNorge_2018/%20version_18.12/Archive/catalog.html
https://thredds.met.no/thredds/catalog/remotesensingradaraccr/%20catalog.html
https://thredds.met.no/thredds/catalog/remotesensingradaraccr/%20catalog.html
https://sildre.nve.no/map?params=1001&maxAge=-1&showDisused=true&x=422726&y=7310225&zoom=13&lang=en
https://sildre.nve.no/map?params=1001&maxAge=-1&showDisused=true&x=422726&y=7310225&zoom=13&lang=en
https://earthdata.nasa.gov/
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fland.copernicus.eu%2Fpan-european%2Fcorine-land-cover%2Fclc-2012%3Ftab%3Dmetadata&data=04%7C01%7CCarolina.Espinoza%40sintef.no%7C61dee7a07dac40ccbc5b08d9a0627f51%7Ce1f00f39604145b0b309e0210d8b32af%7C1%7C0%7C637717167157871428%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=cgyEFwxOH4AmYcFm7NQsOIR9liHLRRgZ5f%2FzPVtfdTM%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fland.copernicus.eu%2Fpan-european%2Fcorine-land-cover%2Fclc-2012%3Ftab%3Dmetadata&data=04%7C01%7CCarolina.Espinoza%40sintef.no%7C61dee7a07dac40ccbc5b08d9a0627f51%7Ce1f00f39604145b0b309e0210d8b32af%7C1%7C0%7C637717167157871428%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=cgyEFwxOH4AmYcFm7NQsOIR9liHLRRgZ5f%2FzPVtfdTM%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fkartkatalog.geonorge.no%2Fmetadata%2Fdtm-50%2Fe25d0104-0858-4d06-bba8-d154514c11d2&data=04%7C01%7CCarolina.Espinoza%40sintef.no%7C61dee7a07dac40ccbc5b08d9a0627f51%7Ce1f00f39604145b0b309e0210d8b32af%7C1%7C0%7C637717167157871428%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=CnV%2Flo2S%2B%2BoqIY%2FPe98LHozcb4f7Rh8%2F68PBMJi2MPs%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fkartkatalog.geonorge.no%2Fmetadata%2Fdtm-50%2Fe25d0104-0858-4d06-bba8-d154514c11d2&data=04%7C01%7CCarolina.Espinoza%40sintef.no%7C61dee7a07dac40ccbc5b08d9a0627f51%7Ce1f00f39604145b0b309e0210d8b32af%7C1%7C0%7C637717167157871428%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=CnV%2Flo2S%2B%2BoqIY%2FPe98LHozcb4f7Rh8%2F68PBMJi2MPs%3D&reserved=0
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C Dataset comparison 

C.1 Annual precipitation sum 
 

 

 
Figure 58: Annual precipitation sum of 2014 and 2015 over the Usma catchment 
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Figure 59: Annual precipitation sum of 2014 and 2015 over the Nausta catchment 
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Figure 60: Annual precipitation sum of 2014 and 2015 over the Grunnåi catchment 
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Figure 61: Annual precipitation sum of 2014 and 2015 over the Surna catchment 
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C.2 Correlation 

 
Figure 62: Spearman correlation seNorge2 and NWP of each sub-catchment, scattered over the 

mean elevation. 

 
Figure 63: Pearson correlation seNorge2 and NWP of each sub-catchment, scattered over the 

mean elevation. 
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D Kirchner model 

 
Figure 64: Sensitivity curve of Usma. Parameters: C1: -1.97, C2: 1.40, C3: 0.007 

 

 
Figure 65: Simulated precipitation according to an inverse hydrological model 

 



 

D Kirchner model 

103 

 
Figure 66: Sensitivity curve of Nausta. Parameters: C1: -2.75, C2: 1.27, C3: -0.015 

 

 
Figure 67: Sensitivity curve of Rinna. Parameters: C1: -2.85, C2: 1.15, C3: -0.024 
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Figure 68: Sensitivity curve of Gaulfoss. Parameters: C1: -2.36, C2: 1.22, C3: -0.009 

 

 
Figure 69: Sensitivity curve of Grunnåi. Parameters: C1: -2.85, C2: 178, C3: 0.000003 
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E Calibration 

 
Figure 70: Parameter variability of the 20 best results using the DEMC method (number of 

simulations: 9000) 
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Figure 71: Comparison of parameter sets of different calibration methods: average KGE of all 

stations (yellow), calibration of Gaua (green) and Gaulfoss (black) 
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E.1 Stepwise calibration 
Table 19: Results of stepwise calibration of the Nausta catchment 

   seNorge2 
corr. 

seNorge2 
NWP corr. NWP 

Initial 
cal 0.918 0.924 0.881 0.88 

val 0.725 0.758 0.833 0.844 

Soil 
cal 0.914 0.926 0.869 0.877 

val 0.726 0.756 0.826 0.843 

Snow 
cal 0.921 0.93 0.883 0.881 

val 0.725 0.743 0.825 0.845 

Divers 
cal 0.923 0.931 0.884 0.882 

val 0.727 0.747 0.825 0.846 

Ilake 
cal 0.929 0.935 0.868 0.869 

val 0.727 0.745 0.825 0.846 

Olake 
cal 0.923 0.931 0.884 0.882 

val 0.726 0.745 0.826 0.847 

Soil 
cal 0.9 0.928 0.884 0.882 

val 0.718 0.756 0.825 0.845 

Snow 
cal 0.921 0.93 0.884 0.883 

val 0.722 0.749 0.825 0.846 

Divers 
cal 0.921 0.929 0.884 0.883 

val 0.723 0.745 0.825 0.846 

Ilake 
cal 0.928 0.934 0.87 0.869 

val 0.722 0.745 0.825 0.846 

Olake 
cal 0.921 0.93 0.884 0.883 

val 0.721 0.744 0.825 0.846 

 

Table 20: Results of stepwise calibration of the Usma catchment 

   seNorge2 
corr. 
seNorge2 

NWP 
corr. 
NWP 

WS corr. WS 

Initial cal 0.734 0.82 0.859 0.849 0.85 0.87 

Soil cal 0.73 0.847 0.864 0.853 0.844 0.868 

Snow cal 0.741 0.875 0.867 0.852 0.85 0.872 

Rest cal 0.759 0.88 0.867 0.854 0.855 0.876 

Ilake cal 0.759 0.88 0.868 0.854 0.855 0.876 

Olake cal 0.775 0.882 0.87 0.856 0.863 0.879 

Soil cal 0.789 0.88 0.871 0.854 0.857 0.88 

Snow cal 0.794 0.885 0.87 0.856 0.863 0.88 

Divers cal 0.794 0.888 0.873 0.859 0.863 0.881 

Ilake cal 0.794 0.888 0.873 0.859 0.863 0.881 

Olake cal 0.794 0.89 0.876 0.86 0.864 0.882 
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Table 21: Results of stepwise calibration of the Grunnåi catchment 

   seNorge2 
corr. 

seNorge2 
NWP corr. NWP 

Initial 
cal 0.822 0.845 0.794 0.809 

val 0.507 0.507 0.709 0.759 

Soil 
cal 0.821 0.820 0.795 0.812 

val 0.506 0.507 0.710 0.757 

Snow 
cal 0.838 0.838 0.798 0.811 

val 0.556 0.558 0.715 0.758 

Divers 
cal 0.845 0.818 0.799 0.817 

val 0.536 0.500 0.714 0.770 

Ilake 
cal 0.847 0.840 0.800 0.817 

val 0.533 0.555 0.717 0.772 

Olake 
cal 0.848 0.845 0.802 0.819 

val 0.526 0.541 0.715 0.770 

Soil 
cal 0.848 0.845 0.803 0.819 

val 0.527 0.537 0.715 0.769 

Snow 
cal 0.854 0.848 0.801 0.818 

val 0.557 0.559 0.715 0.770 

Divers 
cal 0.850 0.855 0.802 0.819 

val 0.546 0.547 0.718 0.773 

Ilake 
cal 0.851 0.855 0.802 0.819 

val 0.546 0.546 0.718 0.773 

Olake 
cal 0.854 0.856 0.803 0.819 

val 0.535 0.542 0.716 0.771 

 
 

Table 22: Results of stepwise calibration of the Gaula catchment 

   seNorge2 
corr. 

seNorge2 
NWP corr. NWP 

Initial 
cal 0.685 0.713 0.708 0.722 

val 0.707 0.794 0.570 0.586 

Soil 
cal 0.652 0.745 0.720 0.733 

val 0.693 0.794 0.581 0.587 

Snow 
cal 0.694 0.757 0.722 0.718 

val 0.707 0.789 0.571 0.571 

Divers 
cal 0.696 0.760 0.724 0.737 

val 0.720 0.791 0.571 0.585 

Ilake 
cal 0.696 0.761 0.724 0.737 

val 0.720 0.791 0.57 0.570 

Olake 
cal 0.697 0.762 0.726 0.740 

val 0.720 0.793 0.570 0.587 
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Table 23: Results stepwise calibration Surna catchment 

   seNorge2 
corr. 

seNorge2 
NWP corr. NWP 

Initial 
cal 0.709 0.866 0.818 0.824 

val 0.505 0.703 0.652 0.675 

Soil 
cal 0.715 0.834 0.818 0.826 

val 0.505 0.697 0.651 0.669 

Snow 
cal 0.715 0.865 0.824 0.821 

val 0.509 0.692 0.645 0.683 

Divers 
cal 0.720 0.874 0.826 0.826 

val 0.505 0.700 0.644 0.673 

Ilake 
cal 0.719 0.875 0.828 0.827 

val 0.505 0.697 0.643 0.672 

Olake 
cal 0.722 0.876 0.820 0.828 

val 0.499 0.695 0.652 0.672 

Soil 
cal 0.714 0.849 0.831 0.826 

val 0.498 0.695 0.633 0.678 

Snow 
cal 0.728 0.881 0.832 0.825 

val 0.507 0.715 0.633 0.690 

Divers 
cal 0.731 0.881 0.832 0.829 

val 0.511 0.713 0.633 0.679 

Ilake 
cal 0.731 0.882 0.832 0.830 

val 0.511 0.712 0.633 0.680 

Olake 
cal 0.731 0.882 0.831 0.830 

val 0.506 0.711 0.633 0.680 
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E.2 Low Flow calibration 
This chapter explains the method and summarizes the results of trying to improve low flows in the 

model. This was done in the Nausta catchments and results applied into another catchment (Usma). 

In the first step, the catchment was only calibrated for the lowest 20 % of discharge. This resulted 

in a poor performance as well as a not suitable CDF function. 

 
Figure 72: CDF of calibrated low flows in Nausta, with seNorge2 (left) and NWP (right) 

 

The next strategy was changing the objective function to test whether using the mean squared 

error (HYPE: MNR) or relative bias (HYPE: MRE) would improve the low flows of the model. This was 

applied for the Q80 calibration, and the results compared. 

 

Table 24: Results of testing different objective functions 

dataset Obj. function KGE RMSE relative bias  

seNorge2 

KGE 0.305 0.330 -0.180 

MRE -2.947 1.172 0.0007 

MNR 0.199 0.358 -0.160 

NWP 

KGE 0.209 0.371 -0.215 

MRE -2.998 1.189 -0.00006 

MNR 0.205 0.350 -0.115 

 

The CDF of the RMSE calibration looked similar to the one from KGE, the relative bias deteriorated 

the results. It can therefore be assumed that the poor performance of low flows is not caused by a 

not suitable objective function. 

To get an overview over parameters that have an influence on low flows, a simple algorithm was 

implemented, that manually changed each parameter. For that, every parameter was set to his 

lowest, highest and average value and the model was executed. The KGE was then calculated and 

compared to the KGE of the original model. Parameter with high changes were considered sensitive 

to low flows. This sensitivity analysis was done for Q80 discharges. 

The results of each parameter are summarized in Table 25. 
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Table 25: Results of the sensitivity analysis of low flow calibration 

 Minimum 
value 

Maximum 
value 

Mean 
value 

KGE change 
with max [%] 

KGE change 
with min  [%] 

KGE change 
with mean 

[%] 

ttpd -1.98 1.98 0.00 -25.4 25.4 4.7 

ttpi 0.05 1.98 1.02 12.6 -1.0 3.8 

deepmem 10.10 297.00 153.55 -0.3 2.1 0.0 

cevpam 0.51 1.49 1.00 0.0 0.0 0.0 

cevpph 30.30 178.20 104.25 0.0 0.0 0.0 

lp 0.86 0.99 0.92 0.0 0.0 0.0 

epotdist 0.10 9.90 5.00 0.0 -0.1 0.0 

sdnsnew 0.05 0.30 0.17 0.1 -0.1 0.0 

snowdensdt 0.00 0.00 0.00 0.1 -0.7 -0.1 

fsclim 0.00 0.00 0.00 0.0 0.0 0.0 

fsckexp 0.00 0.00 0.00 0.1 -18.1 0.0 

wcfc1 0.05 0.99 0.52 0.0 0.1 0.0 

wcfc2 0.05 0.99 0.52 0.0 0.0 0.0 

wcfc3 0.05 0.99 0.52 0.1 -0.1 0.0 

wcwp1 0.05 0.50 0.27 0.0 0.0 0.0 

wcwp2 0.05 0.50 0.27 0.0 0.0 0.0 

wcwp3 0.05 0.50 0.27 0.1 0.0 0.0 

wcep1 0.05 0.50 0.27 0.0 0.0 0.0 

wcep2 0.05 0.50 0.27 0.0 0.0 0.0 

wcep3 0.05 0.50 0.27 0.0 0.0 0.0 

mperc1 5.05 148.50 76.78 0.0 0.0 0.0 

mperc2 5.05 148.50 76.78 0.0 0.0 0.0 

sfrost 0.10 0.99 0.55 0.0 0.0 0.0 

rrcs1 0.01 0.99 0.50 0.0 0.0 0.0 

rrcs2 0.01 0.99 0.50 -8.1 40.8 -8.0 

rrcs3 0.01 0.99 0.50 0.0 0.0 0.0 

srrate 0.01 0.50 0.25 0.0 0.0 0.0 

macrate 0.01 0.50 0.25 0.0 0.0 0.0 

mactrinf 1.01 148.50 74.76 0.0 -3.5 0.0 

mactrsm 0.01 0.99 0.50 0.0 0.0 0.0 

cmlt 0.01 0.49 0.25 -176.9 -84.5 -57.4 

ttmp 0.01 1.98 0.99 -35.5 -36.1 -1.2 

cevp 0.00 0.10 0.05 0.0 0.0 0.0 

frost 0.51 0.99 0.75 0.0 0.0 0.0 

srrcs 0.01 0.99 0.50 0.0 0.0 0.0 

surfmem 1.01 148.50 74.76 0.0 0.2 0.0 

ttrig -0.99 2.97 0.99 -1.5 0.2 0.2 

treda 0.00 0.99 0.50 -0.1 0.0 -0.2 

tredb 0.51 1.98 1.24 -0.2 -0.3 -0.3 

fscmax 0.51 0.99 0.75 -1.4 -69.4 -14.4 

fsck1 0.05 0.50 0.27 0.8 -34.7 -10.3 

fsceff 0.10 0.89 0.50 -25.8 -6.3 1.1 

fscdistmax 0.51 0.99 0.75 0.0 0.3 0.0 

fscdist0 0.40 0.79 0.60 -9.3 0.6 -4.8 
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fscdist1 0.00 0.00 0.00 0.0 0.0 0.0 

depthrel 0.01 4.95 2.48 -0.2 0.0 -0.1 

rivvel 0.10 4.95 2.53 16.4 -46.8 -66.4 

damp 0.01 0.99 0.50 10.6 -23.7 -7.8 

deadl 0.00 9.90 4.95 0.0 0.0 0.0 

deadm 0.00 9.90 4.95 0.0 0.0 0.0 

gratk 10.10 148.50 79.30 -20.1 -9.9 -17.9 

gratp 0.51 3.96 2.23 1.5 -33.0 2.7 

grata 0.00 9.90 4.95 -39.5 9.4 -29.5 

gldepi 1.01 99.00 50.01 0.0 0.0 0.0 

gicatch 0.01 0.50 0.25 0.0 0.0 0.0 

 

This analysis showed than not all of the parameters have an influence on low flows. According to 

the changes in the KGE the parameters: ttpd, ttpi, deepmem, snowdensdt, fsckexp, rrcs2, mactrinf, 

cmelt, ttmp, ttrig, treda, tredb, fscmax, fsck1, fsceff, fscdistmax, fscdist0, depthrel, rivvel, damp, 

graktk, gratp, grata have the highest influence. 

The sensitivity analysis was repeated using RMSE instead of KGE. The sensitive parameters 

remained similar. The sensitive parameters were afterwards used as the only optimization 

parameters. Using only them did only increase the performance slightly.  

Because a good performance was not achieved even with a lower number of parameters, lead to 

the assumption that maybe the defined boundaries of the parameters were wrong. That’s why in 

the next step, a GLUE analysis was applied. The boundaries were increased by decreasing the 

minimum and increasing the maximum. The parameters were calibrated using Monte-Carlo with 

100,000 simulations. Afterwards, the best 100 parameter sets were compared. It became obvious 

that the parameters vary too much and did not converge at all. Except for the river velocity.  
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Figure 73: Results of GLUE analysis of low flow calibration in Nausta 
 

Because the model was not able to converge against a certain value, it was decided to manually 

change the boundaries, according to assumptions of the parameter behaviour. The optpar file 

with the changed boundary values can be found in the digital appendix. Especially recession 

parameters were decreased to improve the performance. It is possible that these values are also 

timestep dependant and should have been decreased in the first place. The initial Q80 calibration 

of seNorge2 had a KGE of 0.339, with increased boundaries, a KGE of 0.542 and with the manually 

changed boundaries 0.539. NWP was originally 0.023, with a higher parameter space 0.162 and 

finally 0.091. It seems like NWP is not able to create as good of a fit as NWP. This might be caused 

by the calibration method, because only specific periods are portrayed. If NWP has another timing 

than the other product, a peak might be measured at a wrong time step. 

 
Figure 74: CDF of the final calibrated Q80 discharges in Nausta 
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A Q80 calibration was also done in Usma, also resulting in a worse performance for the NWP 

product than seNorge2. In Saldaña Espinoza (2022), the low flows were described better, without 

even focusing on them. This might be caused by the extra calibration of lake levels, that 

automatically calibrate storage and recession curves of a catchment. When using a daily timestep, 

timing issues will decrease. A possible improvement might be to calibrate recession and lake 

parameters by only calibrating the recession curves of a hydrograph and then calibrate other 

parameters in the next step. 

This analysis resulted in no promising solutions. Although it must be assumed that the parameter 

values have an influence, there was no optimal solution found. However, seNorge2 seemed to 

create better results than NWP. Furthermore, sensitive parameters were found and the need of an 

extra calibration step discussed.  
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F Model results 
Table 26: Summarized model results of Usma 

   SeNorge2 
SeNorge2 

corr 
NWP 

NWP 
corr 

WS WS corr 

Correction 
Pcurain - 0.216 - -0.340 - 0.135 

Pcusnow - 0.466 - -0.028 - 0.123 

Difference 
calibrations 

KGE 
improvement 0.06 0.07 0.02 0.01 0.01 0.01 

NSE 
improvement 0.11 0.14 0.03 0.03 0.03 0.02 

Performance 

KGE 0.780 0.885 0.874 0.859 0.857 0.879 

KGE summer 0.812 0.900 0.876 0.864 0.851 0.885 

KGE winter 0.418 0.657 0.723 0.604 0.469 0.588 

NSE 0.669 0.789 0.752 0.728 0.736 0.764 

NSE summer 0.650 0.800 0.752 0.743 0.738 0.780 

NSE winter 0.418 0.526 0.498 0.390 0.459 0.453 

CDF 

Low flows* (g) (o) (su) (o) (g) (g) 

Low flows 
summer* 

(so) (so) (u) (o) (o) (o) 

Low flows 
winter* 

(u) (o) (su) (o) (su) (g) 

Peaks* (o) (o) (o) (o) (o) (o) 

Peaks 
summer* 

(o) (o) (o) (o) (o) (o) 

Peaks 
winter* 

(u) (u) (u) (u) (u) (u) 

Correlation  

r2 all 0.69 0.8 0.77 0.74 0.75 0.78 

r2 summer 0.67 0.81 0.77 0.77 0.76 0.8 

r2 winter 0.48 0.81 0.77 0.77 0.76 0.8 

* underestimated (u), slightly underestimated (su), in good agreement (g), slightly overestimated 

(so) and overestimated (o) 

 
Figure 75: Comparison modelling results of Usma with different datasets. The time series was 

averaged to a daily timestep. Grey area: simulated discharge from the different 
products 
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Table 27: Summarized model results of Grunnåi 

   SeNorge2 
SeNorge2 

corr 
NWP 

NWP 
corr 

WS** 
WS 

corr** 

Correction 
Pcurain - -0.031 - 0.217 - 0.465 

Pcusnow - 0.284 - -0.051 - 0.419 

Difference 
calibrations 

KGE 
improvement 0.03 0.01 0.01 0.01 - - 

NSE 
improvement 0.05 0.02 0.03 0.02 - - 

Performance 

KGE 0.852 0.843 0.785 0.795 0.636 0.840 

KGE summer 0.826 0.810 0.729 0.780 0.729 0.774 

KGE winter 0.780 0.789 0.740 0.684 0.361 0.701 

NSE 0.703 0.700 0.573 0.592 0.612 0.685 

NSE summer 0.695 0.681 0.543 0.580 0.643 0.691 

NSE winter 0.640 0.656 0.560 0.508 0.367 0.554 

CDF 

Low flows (su) (su) (su) (su) (u) (u) 

Low flows 
summer (su) (su) (su) (u) (u) (su) 

Low flows 
winter (u) (u) (u) (u) (u) (u) 

Peaks (u) (u) (u) (u) (u) (su) 

Peaks 
summer (u) (u) (u) (u) (u) (su) 

Peaks winter (g) (g) (su) (su) (u) (g) 

Correlation  

r2 all 0.74 0.73 0.62 0.65 0.65 0.73 

r2 summer 0.72 0.73 0.68 0.7 0.51 0.64 

r2 winter 0.72 0.71 0.58 0.62 0.65 0.73 

* underestimated (u), slightly underestimated (su), in good agreement (g), slightly overestimated 

(so) and overestimated (o) 

** Daily timestep 

 
Figure 76: Comparison modelling results of Grunnåi with different datasets. The time series was 

averaged to a daily timestep. Grey area: simulated discharge from the different 
products 
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Table 28: Summarized model results of Surna 

   SeNorge2 
SeNorge2 

corr 
NWP NWP corr 

Correction 
pcurain - 0.481 - -0.224 

pcusnow - 0.249 - 0.279 

Difference 
calibrations 

KGE improvement 0,02 0,02 0,01 0,01 

NSE improvement 0,07 0,03 0,03 0,02 

Performance 

KGE 0,757 0,895 0,713 0,702 

KGE summer 0,801 0,899 0,698 0,682 

KGE winter 0,497 0,676 0,500 0,528 

NSE 0,703 0,799 0,639 0,629 

NSE summer 0,677 0,798 0,627 0,598 

NSE winter 0,193 0,364 -0,094 -0,017 

CDF 

Low flows* (u) (su) (u) (su) 

Low flows summer* (u) (su) (u) (u) 

Low flows winter* (u) (u) (u) (u) 

Peaks* (u) (u) (su) (u) 

Peaks summer* (u) (u) (u) (u) 

Peaks winter* (u) (u) (su) (u) 

Correlation  

r2 all 0,75 0,82 0,77 0,77 

r2 summer 0,45 0,57 0,4 0,41 

r2 winter 0,73 0,81 0,78 0,77 

* underestimated (u), slightly underestimated (su), in good agreement (g), slightly overestimated 

(so) and overestimated (o) 

 

 
Figure 77: Comparison modelling results of Rinna with different datasets. The time series was 

averaged to a daily timestep. Grey area: simulated discharge from the different 
products 

 



 

F Model results 

118 

 

 
Figure 78: Comparison modelling results of Gaua (Gaula catchment) with different datasets. The 

time series was averaged to a daily timestep. Grey area: simulated discharge from the 
different products 

 

 
Figure 79: Comparison modelling results of Gaula ovf. Fora (Gaula catchment) with different 

datasets. The time series was averaged to a daily timestep. Grey area: simulated 
discharge from the different products 
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Figure 80: Comparison modelling results of Gaulfoss (Gaula catchment) with different datasets. 

The time series was averaged to a daily timestep. Grey area: simulated discharge from 
the different products 

 

 

 
Figure 81: Comparison modelling results of Hugdal bru (Gaula catchment) with different datasets. 

The time series was averaged to a daily timestep. Grey area: simulated discharge from 
the different products 
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Figure 82: Comparison modelling results of Killingdal (Gaula catchment) with different datasets. 

The time series was averaged to a daily timestep. Grey area: simulated discharge from 
the different products 

 

 
Figure 83: Comparison modelling results of Lillebudal bru (Gaula catchment) with different 

datasets. The time series was averaged to a daily timestep. Grey area: simulated 
discharge from the different products 
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Figure 84: Comparison modelling results of Eggafoss (Gaula catchment) with different datasets. 

The time series was averaged to a daily timestep. Grey area: simulated discharge from 
the different products 
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F.1 Water balances 
 

 
Figure 85: Annual water balance of Gaula 
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Figure 86: Seasonal water balance of Nausta when using different input products. Observed 

values are from discharge measurements and MOD16. 
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Figure 87: Seasonal water balance of Grunnåi when using different input products. Observed 

values are from discharge measurements and MOD16. 
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Figure 88: Seasonal water balance of Surna when using different input products. Observed values 

are from discharge measurements and MOD16. 
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Figure 89: Example of the storage behaviour of the model within a catchment. Here: no storage 

accumulation. Catchment: Rinna, Dataset: NWP (uncorrected). 
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Figure 90: Example of the storage behaviour of the model within a catchment. Here: storage 

accumulation in the main river. Catchment: Usma, Dataset: NWP (uncorrected). 
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Figure 91: Example of the storage behaviour of the model within a catchment. Here: storage 

accumulation through snow. Catchment: Nausta, Dataset: NWP (uncorrected). 
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G Event Analysis 

 
Figure 92: Precipitation event in Usma, 2014-10-18 to 2014-10-19. Figure includes observed and 

simulated discharge from weather station data, seNorge2 and NWP. 
 

 
Figure 93: Precipitation estimated from seNorge2, NWP and an inverse hydrological model in 

Usma, October 2014 
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Figure 94: Precipitation Event in Rinna, 2014-09-21 to 2014-09-23. Figure includes observed and 

simulated discharge from, seNorge2 and NWP 
 

 
Figure 95: Precipitation Event in Nausta, 2016-01-05 to 2016-01-13. Figure includes observed and 

simulated discharge from, seNorge2 and NWP 
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Figure 96: Precipitation Event in Rinna, 2015-12-26 to 2015-12-31. Figure includes observed and 

simulated discharge from, seNorge2 and NWP 
 

 
Figure 97: Precipitation Event in Grunnåi, 2016-06-16 to 2016-06-19. Figure includes observed and 

simulated discharge from, seNorge2 and NWP 
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Figure 98: Precipitation Event in Rinna, 2015-06-21 to 2015-06-24. Figure includes observed and 

simulated discharge from, seNorge2 and NWP 
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Figure 99: Precipitation Event in Eggafoss (Gaula), 2014-10-01 to 2014-10-03. Figure includes 

simulated and model discharge from, seNorge2 and NWP 
 

 

 
Figure 100: Precipitation Event in Gaua (Gaula=, 2016-07-26 to 2016-07-28. Figure includes 

simulated and model discharge from, seNorge2 and NWP 
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Figure 101: Precipitation Event in Hugdal bru, 2016-01-01 to 2016-01-13. Figure includes observed 

and simulated discharge from, seNorge2 and NWP 
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H Sensitivity Analysis  

 
Figure 102: GLUE analysis in Grunnåi with normalized values. 
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Figure 103: GLUE analysis in Nausta with normalized values. 
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Figure 104: Parameter space of GLUE analysis in detail of Grunnåi. 
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Figure 105: Parameter space of GLUE analysis of Nausta. 
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Figure 106: Relationship of calibrated river velocity with catchment mean slope and mean 

elevation 

 
Figure 107: Double sum curve in Rinna, for seNorge2 and NWP and switched calibration and 

validation period. Dashed line: validation period 
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I Applied software and programmes in this thesis 
In this thesis, different software for data manipulation, visualizing and sub-catchment adjustment 

was applied. Reading and extracting netcdf4 files was effectuated in RStudio 

(https://www.rstudio.com, version 5501.9.0.0). An integrated development environment for R 

programming.  For handling and manipulating HYPE files a R package called HYPEtools (version 

0.5.1) is available (https://github.com/rcapell/HYPEtools). This was used for spatial visualising 

HYPE results, as well as reading and interpolating GeoData.txt data. 

To extract, adjust and recalculate the characteristics of sub-catchments WHIST (version 12.0.2, 

https://git.smhi.se/whist/whist/-/wikis/home) was used. This is a GIS-based tool from SMHI that is 

able to create and manipulate watersheds. The creation of watershed was done by Schönfelder 

(2017). In this thesis, WHIST was mainly used for small adjustments and recalculating 

GeoData.txt values. For further analysis and visualization QGIS (version 3.16.11, 

https://qgis.org/en/site) was applied. 

Python 3.7.4 was applied for every other analysis. The packages subprocess (version 0.0.8, 

https://pypi.org/project/subprocess.run) and pandas (version 1.0.1, 

https://pypi.org/project/pandas/1.0.1) were the most necessary ones for handling and running 

HYPE from the console. The version of HYPE is 5.16.1 

(https://sourceforge.net/projects/hype/files/). 

J Digital appendix 
The digital appendix is a summary of all important files that were created during this thesis. It 

contains models, figures, scripts and videos created during this master thesis. The appendix is 

structured as follows: 

1. Manuscript and Presentation 

Contains the digital version of this thesis as well as slides from the final presentation. 

2. HYPE models 

Contains all models of the catchments, divided into datasets. “ orcing ata” contains observational 

data from the catchment. The folder ‘M0-0’ contains the initial calibration, ‘results1’ contains the 

model version after the stepwise calibration.  

3. Figures 

Contains all figures created during this master thesis. The folder structure is similar to the second 

folder with each catchment and dataset. Additionally, figures and videos from precipitation events, 

the GLUE analysis, MOD16 data and seasonal water balances are included. 

3. Scripts 

Contains the Python and R scripts developed in this study. The excel sheet “SummaryScriptsJessica” 

summarizes and explains the scripts and their location. 

X. Appendix 

Contains the results from the low-flow calibration. 

 

 

 

 

 

https://www.rstudio.com/
https://github.com/rcapell/HYPEtools
https://git.smhi.se/whist/whist/-/wikis/home
https://qgis.org/en/site
https://pypi.org/project/subprocess.run
https://pypi.org/project/pandas/1.0.1
https://sourceforge.net/projects/hype/files/
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