

Lysimeter experiments reveal effects of elevated atmospheric carbon dioxide on soil-water fluxes and biomass production of alpine grassland under drought

S. Birk¹, M. Vremec¹, V. Forstner¹, M. Herndl², A. Schaumberger²

¹University of Graz, Institute of Earth Sciences, NAWI Graz Geocenter, Austria

²Agricultural Research and Education Centre (AREC) Raumberg-Gumpenstein, Austria

Objective: Effect of elevated CO₂ on soil water fluxes and biomass production

Vegetation response to elevated CO₂ (eCO₂) on evapotranspiration (ET):

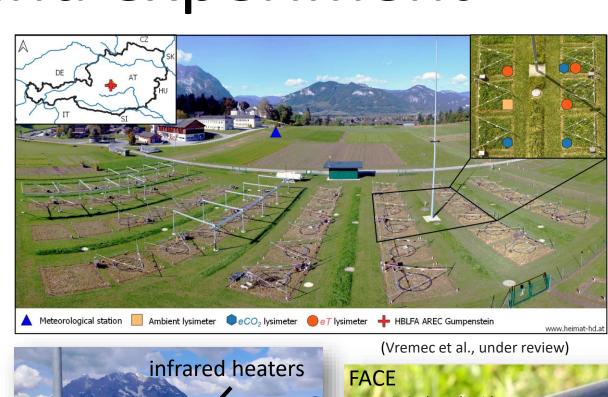
- Partial stomatal closure reduces ET at leaf scale Water Use Efficiency (WUE) effect ↓↓
- Increased foliage cover increases ET at canopy scale CO₂ fertilization effect

"Increasing atmospheric CO_2 concentrations increase plant growth and water-use efficiency, but there is low confidence in how these factors drive regional water cycle changes." IPCC (2021)

Aim: Identify the effects of eCO₂

- on evapotranspiration, soil-water availability, and above ground biomass (AGB)
- of managed alpine grassland
- under drought.

Approach: Grassland experiment

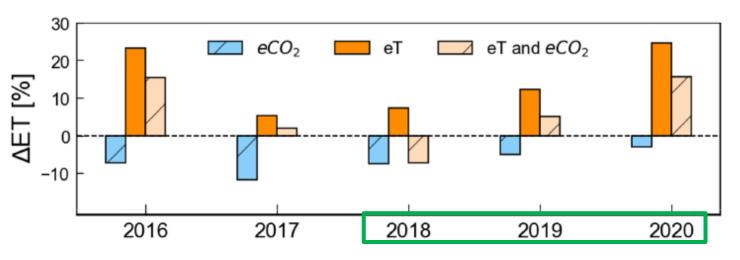

- ClimGrass site, AREC Raumberg-Gumpenstein
- Warming (infrared heaters)
- CO₂ enrichment (fumigation ring)
- High precision weighable lysimeters

Available data:

- Meteorological data
- Soil water fluxes (ET, seepage, storage change)
- Crop height, leaf area index and biomass throughout the growing season
- Data availability: 2015-2021

For details see Forstner et al., HESS, 2021

https://doi.org/10.5194/hess-25-6087-2021

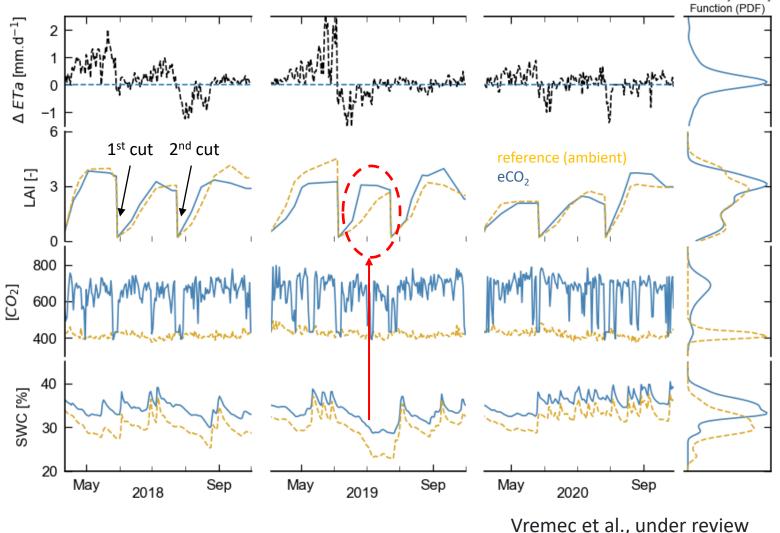


Effect of eCO₂ on ET

- eCO₂ decreases ET
- Warming increases ET
- Combined treatment
 - tends to increase ET
 - but the effect differs between the years
- Detailed evaluation of data from 2018-2020

Annual evapotranspiration 2016-2020: Differences to ambient lysimeter

Effect of eCO₂ on ET

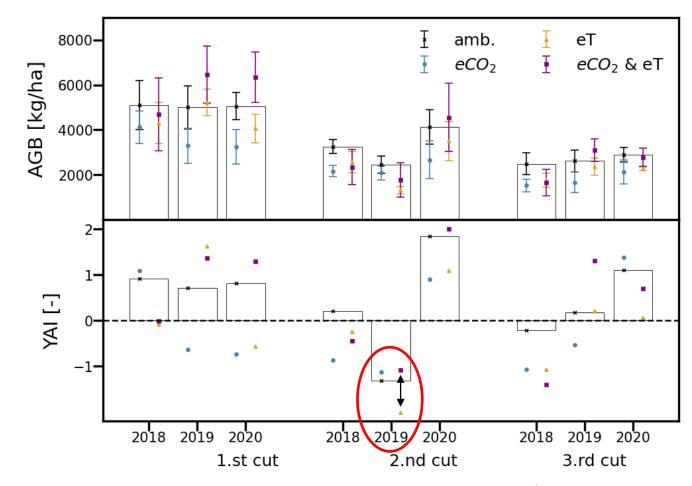


Fertilization vs. WUE effect

Observed effect of eCO₂:

- Increased Leaf Area Index (LAI) only in drought 2019
- Likely resulting from water savings due reduced ET
- ⇒ Mainly water use efficiency effect
- ⇒ Fertilization effect not confirmed

Soil Water Content



Probability Density

Effect of summer drought 2019 on above ground biomass (AGB)

Yield Anomaly Index (YAI) reveals effect of drought on AGB of 2nd cut in 2019

- Strongest yield anomaly on heated plots (eT)
- Weaker yield anomaly with elevated CO₂
 (eCO₂, eCO₂ & eT)
- Most pronounced effect of eCO₂ under warming

Conclusions

Partial stomatal closure due to elevated atmospheric carbon dioxide

- increases the water use efficiency of grassland,
- reduces evapotranspiration,
- results in soil water savings,
- mitigates drought effects on biomass production of managed alpine grassland,
- most effectively under warming.

Acknowledgements

The Earth System Sciences programme (project ClimGrassHydro) and the DOC funds of the Austrian Academy of Sciences provide funding for Matevz Vremec and Veronika Forstner

The lysimeter facility was funded by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (project Lysi-T-FACE, DaFNE, 100719, BMLFUW)

Support at the lysimeter station by Martina Schink, Andreas Klingler, Matthias Kandolf, Medardus Schweiger and Erich Pötsch