

70° 45′ S. 11° 38′ E

Summertime evaporation over glacial lakes in

the Schirmacher oasis,

East Antarctica

Elena Shevnina¹

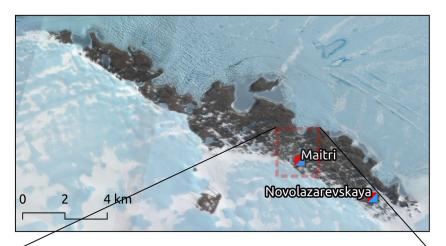
with the contributions by Miguel Potes²,

Timo Vihma¹, Tuomas Naakka¹,

Pankaj Ramji Dhote³ and Praveen Kumar Thakur³

70°30'5

Glacial lakes (Stokes et al., 2019)
Basemap, SCAR ADD 2008
Ice shelf
Land


1.0,12.2019

¹Finnish Meteorological Institute, Helsinki, Finland, ² Institute Earth Science, Evora, Portugal, ³ Indian Institute of Remote Sensing, Dehradun, India.

Research has funded by the Academy of Finland (contract number 304345) and the EU COST Action (ES1404).

Data: summer 2018, Lake Zub/Priyadarshini

Hobo Programme Maitri O 0.5 1 km

Surface area: 35 000 m²

Volume: 10 000 m³ Maximum depth: 6 m

Water temperature in summer: 6-8 °C

1st January – 9th February

Irgason site:

3D wind speed, air temperature, H₂O concentration.

IButton and Hobo:

lake's surface temperature.

Maitri site:

air temperature, wind speed.

Methods: direct and indirect

• Eddy covariance method, E_{EC} (ie. Aubinet et al., 2012)

Indirect methods, E_{mod} :

- Bulk-aerodynamic method (Heikinheimo et al., 1999);
- Mass (water) balance method;
- Energy balance method;
- Combination equations (Penman, 1948; Doorenbos and Pruitt, 1975; Odrova, 1979; Shuttleworth, 1993) + new regional coefficents;
- Isotopes' method ...
- + uncertanties inherent in the indirect methods;
- + efficiency of the indirect methods to reproduce the day-by-day evaporation over the lake surface (by the Pearson correlation coefficient, the root square standard error and s/σ criteria, ie. Popov, 1976).

$$s = \sqrt{\sum_{i=1}^{n} (E_{EC}^{i} - E_{mod}^{i})^{2} / (n-m)} \qquad \sigma = \sqrt{\sum_{i=1}^{n} (E_{EC}^{i} - \bar{E}_{EC})^{2} / n}$$

Results

Method	Min/Max, mm	Mean ± SD	Sum, mm
Eddy covariance	1.4 – 5.0	3.0 ± 1.1	114
Bulk-aerodynamic	0.6 / 3.5	2.0 ± 0.8	78
Shuttleworth, 1993	0.2 / 1.8	1.0 ± 0.4	38
Penman, 1948	0.0 / 2.0	1.3 ± 0.5	48
Doorenbos and Pruitt, 1975	0.0 / 2.9	1.8 ± 0.8	68
Odrova, 1979	0.1 / 1.3	0.8 ± 0.3	32

- All methods underestimated the evaporation over the surface of the glacial lake: from 32 % (the bulk-aerodynamic method) to over 40 72 % (the combination equations).
- The indexes of the efficiency of the all methods are too low, and it means that none of the methods considered can be suggested to evaluate the day-by-day evaporation.
- The regional coefficients for the combination equation were derived, however the formula needs testing with the independent data.

Conclusions ...

- The results show that in summer up to 5 mm of water evaporated daily from the ice-free surface of the glacial lake located in Antarctica.
- The selected indirect methods underestimated the evaporation over the lakes' surface from 32 to 72%.
- The results are important for estimating the evaporation over polar regions where a growing amount of melted water is recently evident.

<u>... next steps</u>

- to estimate the evaporation over the ice breaking period;
- to investigate the intra daily cycle of the evaporation;
- to evaluate the uncertainties inherent in the energy balance method;
- to estimate the efficiency of new regional combination equation with independent data; ...

Lake Glubokoe: summer 2019-2020

Evaporation over glacial lakes in Antarctica

Elena Shevnina 61, Miguel Potes 62, Timo Vihma 61, Tuomas Naakka 61, Pankaj R. Dhote 63, and Praveen K. Thakur 63

Thank you for the attention

with logistic support of the Finnish Antarctic Research Program, Russian Antarctic Expedition and Indian Antarctic Expedition

¹Finnish Meteorological Institute, Helsinki, Finland

²Institute Earth Science, Evora, Portugal

³Indian Institute of Remote Sensing, Dehradun, India