

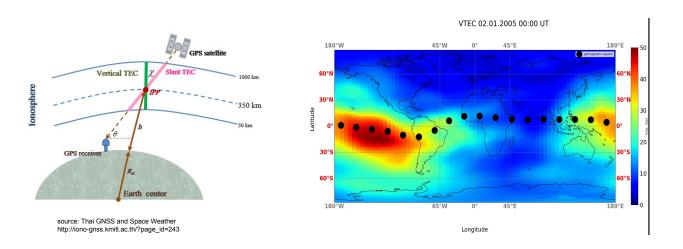
Global VTEC Modeling with Neural Networks

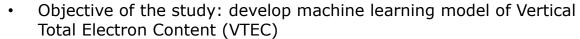
Karolina Kume ^{1,2}, Prof. Dr. Yuri Shprits ^{1,2,3}, Artem Smirnov ^{1,2}, Dr. Irina Zhelavskaya ¹, Dr. Ruggero Vasile ¹, Dr. Stefano Bianco ¹

¹Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Potsdam, Germany

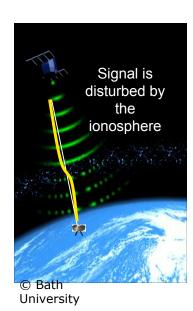
²Institute of of Physics and Astronomy, University of Potsdam, Potsdam, German

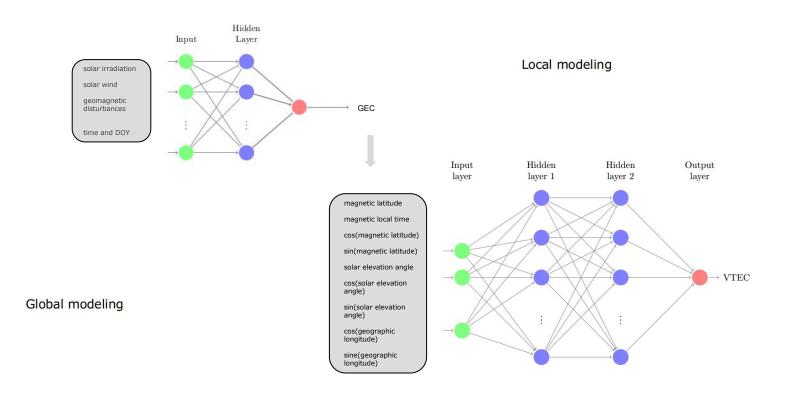
3University of California Los Angeles, CA, USA

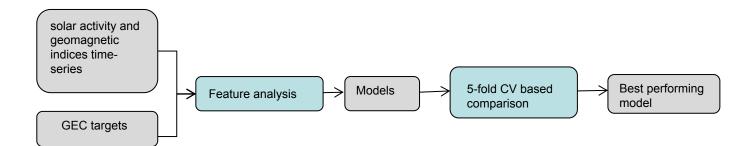




- VTEC: electron columnar number density
- Extracted by GNSS measurements from the IGS network
- Measured indirectly based on the GPS signal transmission delay







Feature selection methods:

- 1. Related work of continuous 3D electron density model by Smirnov et al, 2020 adding time histories
- 2. Time-lagged Pearson cross-correlation
- 3. Permutation feature importance
- 4. Mutual information

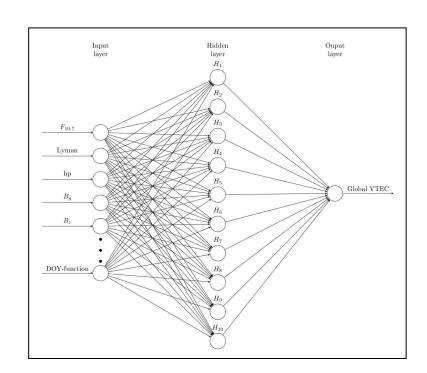
X_A	X_B	X_C	Y
xa1	xb1	xc1	y1
xa2	xb2	xc2	y2
хаЗ	xb3	хс3	у3
xa4	xb4	xc4	y4
xa5	xb5	хс5	<i>y</i> 5
xa6	xb6	хс6	y6

Permutation feature importance illustration

Source: Cerliani M., Feature Importance with Neural Network,

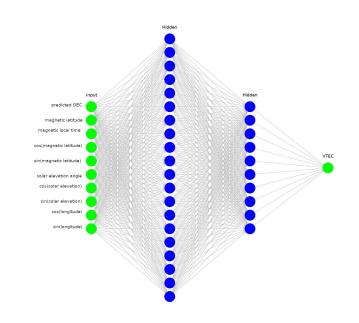
Towards Data Science

- Neural network consists of ten neurons
- Feature set consists of Lyman alpha, F 10.7, B_y , B_z , V_x , SYM-H, Hp, trigonometric functions of DOY and universal time with time histories from the previous 72 and 96 hours

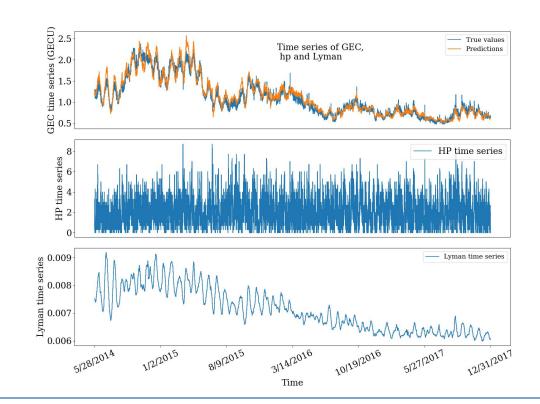


• Final neural network was tested on years 2004, 2006, 2011, 2016

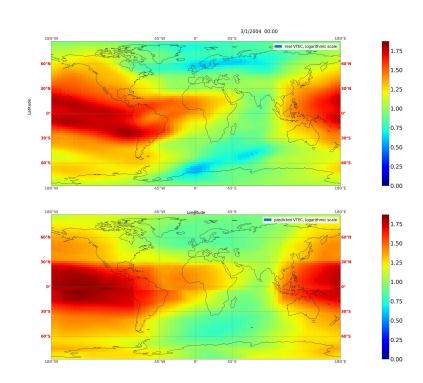
Period	RMSE	MAE
2004	4.9	3.6
2006	3.8	2.8
2011	6.6	4.7
2016	4.7	3.6
entire period	5.1	3.7



- Test data: 2014 2017
- Performance in test data expressed in correlation 97 %

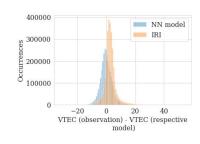


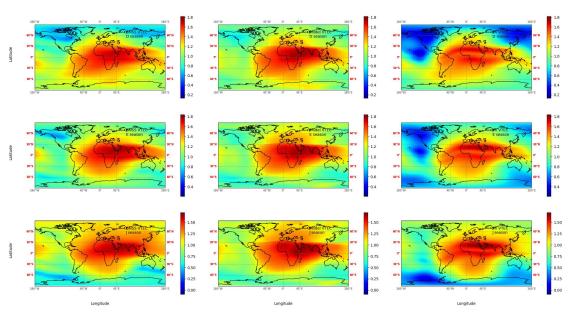
- · Diurnal variation in logarithmic scale
- Model captures reasonably well the variations of the target
- Model was compared to 1-step variant and has better performance and reduces overfitting by 62%



- D-season or December solstice: January, February, November, December
- E-season or Equinoxes: March, April, September, October
- J-season or June solstice: June, July, May, August

Туре	IRI	NN
RMSE	5.3	4.3
Dist. mean	2.8	-0.09





Future directions

- Incorporate information from tidal waves into the model
- Experiment extensively with data rebalancing techniques for a storm-time model

Summary

- A new approach for modeling VTEC is introduced with separation of global and local component
- The approach introduces significant advantages in terms of computational complexity
- In the global component, the GEC is predicted based on geomagnetic and solar indices
- The agreement of observations and model for GEC is 97 % in terms of correlation
- In the local component, the VTEC is predicted based on GEC and geographic and geomagnetic coordinates
- The final model achieves good results for different solar cycle activity periods

Acknowledgments

This research is supported by the Helmholtz Pilot Projects Information & Data Science II, MAchine learning based Plasma density model project (MAP) - ZT-I-0022.

Additional Slides

Measurements of VTEC

• TEC can be derived from electron density

$$STEC(x_r, x^s, t) = \int_{x_r}^{x^s} N_e(s, t) ds$$

TEC can be derived from GNSS measurements

$$P_1 - P_2 = \frac{40.3(f_2^2 - f_1^2)}{f_1^2 f_2^2} \cdot mf(z) \cdot VTEC + c(DCB_s + DCB_r)$$

where P 1 and P 2 are the smoothed dual-frequency code measurements; f 1 and f 2 are the carrier frequencies of the L1 and L2 signals, respectively; m f is the ionospheric mapping function, which depends on the zenith distance z at the receiver's location; VTEC is the vertical TEC at the IPP; c is the speed of light; DCB s and DCB r are the differential code biases of satellites and receivers, respectively.

Mutual information and or pearson

· Mutual information in discrete case

$$I(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(\frac{p_{(X,Y)}(x,y)}{p_X(x) \, p_Y(y)}\right), \quad \text{(eq.1)}$$

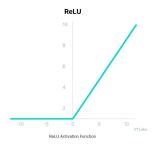
activation functions

Sigmoid activation function

$$f(x) = \frac{1}{1 + e^{-x}}$$

Rectifier linear unit

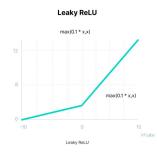
$$f(x) = max\left(0,x\right)$$



activation functions

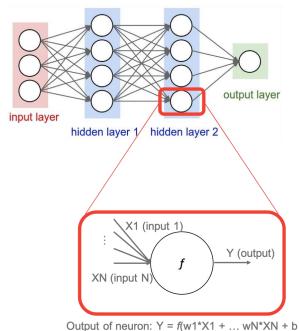
Leaky RELU

$$f(x) = max(0.1x, x)$$



Introduction Modeling Configuration Tools Results

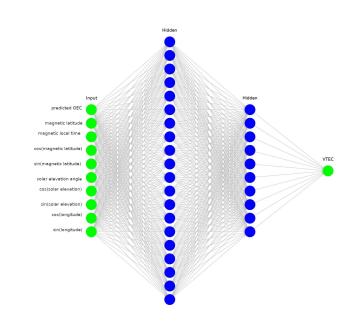
- Powerful algorithms used for classification, function approximation, pattern recognition, outlier detection etc
- Consist of input, one or more hidden layers and output layer
- Each hidden layer computes linear combination of the previous layer inputs and applies non-linear transformation
- Updates of weights and biases through gradient descent applied on difference between observation and prediction



Source: Zhelavskaya I. (2020)

 Final neural network was tested on years 2004, 2006, 2011, 2016

Period	RMSE	MAE
2004	4.9	3.6
2006	3.8	2.8
2011	6.6	4.7
2016	4.7	3.6
entire period	5.1	3.7



pearson correlation

