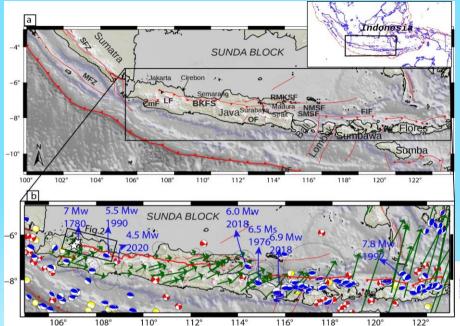


Back-arc thrusting in the Jakarta basin

Sonny Aribowo^{1,2}, Laurent Husson¹, Christophe Basile¹, Danny H. Natawidjaja², Christine Authemayou³, Mudrik R Daryono², Manon Lorcery¹



¹ Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes, CNRS, Grenoble, France.

² National Research and Innovation Agency (BRIN), Bandung, Indonesia

³LGO, IUEM, CNRS, Université de Brest, Plouzané, France.

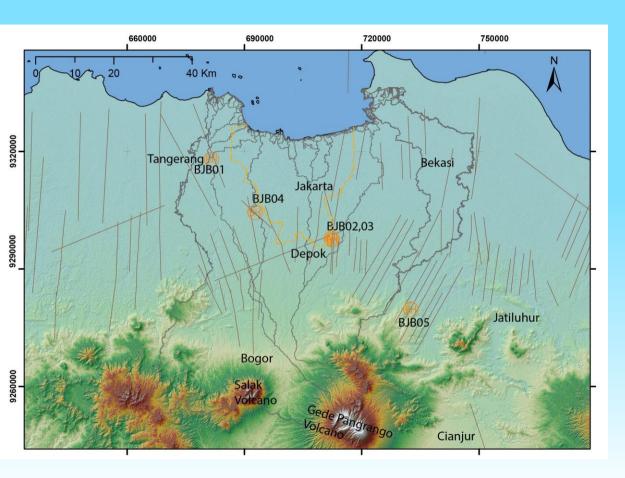
Introduction

GPS velocity data: Koulali et al., (2017), Focal mechanism data: GCMT, Ekstrom et al. (2012)

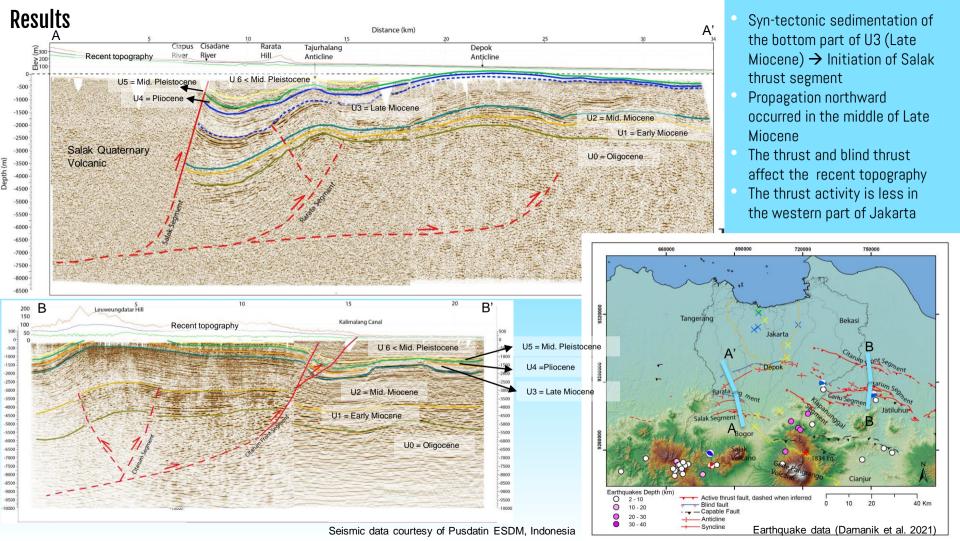
Front View of Buitenzorg Palace (Bogor) during the Earthquake of 10 October 1834, Willem Troost (II), 1834 - 1836

 $6.9 \, \text{Mw}$ Lombok back-arc thrust earthquake event in 2018 (Yang, et al., 2020)

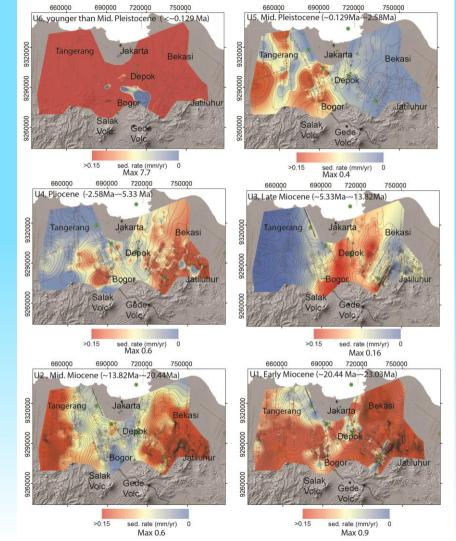
There is major back-arc thrust fault in the northern part of Java Island (e.g.Simandjuntak & Barber, 1996)


Active fault studies based on geodetic and seismology show that the fault is active (e.g. Koulali et al, 2017; Supendi et al; 2018)

Back-arc thrust propagation to West Java (Aribowo et al, in review)


Does the active back-arc thrust threats Jakarta?

Data & Methods



- DEM analysis (30-m, 8-m, 2-m resolutions)
- Seismics reflections interpretations, aided with borehole data (courtesy of Pusdatin, ESDM, Indonesia)
- Time structural map vs sedimentation rate map to see the timing of the structure and history of the Jakarta Basin

Results

U1= high sedimentation rate. structural highs in the Jakarta, Tangerang region and lows in Bekasi and Bogor Sedimentation fill the Depok Low after Middle Miocene (U3) The end of Late Miocene-Pliocene: E-W structure propagate westward, initiation of Depok antiform, shortening of the Bogor area High sedimentation rates after Mid Pleistocene-Recent, except in the small region around Depok antiform Tectonic activity is less in the western part of Jakarta in the present day

To conclude

Propagation westward has occurred in the Late Miocene and is still active until recent
Northward propagation initiated in the upper Late Miocene
Folding related blind-thrust in the Jakarta Basin
Back-arc thrust fault system been active since Late Miocene to recent

The work for calculating the uplift rate and slip rate is still ongoing

Thank you for your attention!