

Quantifying long-term sediment dynamics of a proglacial river in an alpine catchment

<u>Livia Piermattei</u>¹, Tobias Heckmann², Moritz Altmann², Sarah Betz-Nutz², Fabian Fleischer², Florian Haas², Norbert Pfeifer³, Camillo Ressl³, Jakob Rom², Michael Becht²

1 Department of Geosciences, University of Oslo, Norway, **livia.piermattei@geo.uio.no** 2 Physical Geography, University of Eichstätt-Ingolstadt, Germany 3 Department of Geodesy and Geoinformation, TUWien, Austria

https://doi.org/10.5194/egusphere-egu22-8589

SEHAG – SEnsitivity of High Alpine Geosystems to climate change since c. 1850 https://sehag.ku.de/en/our-project/

OBJECTIVE

What are the effects of ongoing climate change since the end of the LIA on proglacial river morphodynamic and sediment transfer

- 1) How glacier forefield and the active floodplain (e.g. length, area) change due to climate change
- 2) What are the main factors that influence river sediment change among:
 - Glacier retreat
 - Lateral hillslope
 - Strong runoff events
 - Human factors

Kaunertal catchment, Austria

DATASET

66 years, 19 digital elevation model (DEMs) spanning inter-survey periods between one month and 16 years

Historical aerial images

Digital aerial images

Airborne Lidar (ALS)

Terrestrial Lidar (TLS), drone (UAV)

METHOD

66 years, 19 digital elevation model (DEMs) spanning inter-survey periods between one month and 16 years

DEM of difference (DEM_{diff}):

DEM_{diff} = Elevation change

DEM_{diff} * Cell size² = Volume change

Glacier forefield changes

Mapping morphologies

- Glacier
- Active floodplain
- Lateral moraine (ice free)

in ~70 years:

- Area of the active floodplain increased by 60%
- River length from 1.4 km to 4.3 km

Net cumulative sediment balance [m³]

after 2014, the glacier bed is mainly rocky and no strong runoff events have occurred

Conclusions and Outlook

- **DEMs from historical images** can capture accurate erosional and depositional patterns at the resolution of 1 m
- Glacier changes, glacier bed (e.g. sediment bed, bedrock), and lateral hillslope have the largest impact on sediment balance
- Strong single event (e.g. lateral moraine sediment deliver, glacial outburst and runoff) can have a large impact on sediment balance

 High temporal resolution data are needed to detect the variability of proglacial river sediment budget

Appendix

Spatio-temporal variability of net sediment volume

6 River reaches and 100 m subsection

Net sediment volume of the active floodplain

Spatio-temporal variability of net sediment volume

