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Introduction
• The rate of mass loss from the Antarctic Ice 

Sheet is increasing.
• Projections of future mass loss from the 

Antarctic Ice Sheet are highly uncertain.

• Implications for global mean sea-level rise.
• Threatens coastal communities and 

infrastructure.

• To reduce uncertainty in projections we need to 
improve our understanding of complex ice-sheet 
processes.

• One such process is ice-sheet subglacial 
hydrology.

Projections of future sea-level rise: IPCC AR6 WG1 SPM (2021)

Observed mass loss from the Antarctic Ice Sheet (IMBIE)



Introduction
• Meltwater forms at the base of the ice sheet due 

to geothermal heat flux and frictional 
dissipation.

• Subglacial melting is only a small component of 
the total ice sheet mass balance (≈3% of surface 
accumulation) but plays an important role:
• Lubricates the ice-bed interface allowing 

faster ice flow.
• Runoff of freshwater into the ocean, 

enhances ice-shelf basal melting, influences 
biological productivity and ocean circulation.

• However, melt rates and hydrology are highly 
uncertain – there are few observations of the 
subglacial environment hidden by up to 4 km of 
ice.

Low effective pressure

High effective pressure

I. Hewitt

Lazeroms et al., (2019)



Introduction
• Study area: Amery Ice Shelf Catchment

• Region of East Antarctica
• Area of 1.3 x106 km2

• Third largest ice shelf.
• Considered to be relatively stable

• Use satellite observations of active subglacial 
lakes and ice-shelf basal melting to constrain 
model of subglacial hydrology. 

Amery catchment: Ice surface speed

Amery Ice Shelf: Basal melt rate
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Modelling subglacial melt rates

𝑀 =
𝐺𝐻𝐹 + 𝜏!𝑢! + 𝑘"𝜃!

𝐿"𝜌"

Martos et al., (2017) - magnetic
Shen et al., (2020) - seismic

Englacial temperature profile:
Van Liefferinge & Pattyn (2013)

𝑀 = Melt rate, 𝐺𝐻𝐹 = Geothermal Heat Flux,
𝜏! = basal shear stress, 𝑢! = basal speed,

𝑘" = thermal conducKvity, 𝜃! = basal temperature gradient,
𝐿" = Latent heat of fusion, 𝜌" = density of ice

Geothermal heat flux
Basal frictional dissipation
(next slide)

Vertical conduction



Modelling subglacial melt rates: Frictional 
Dissipation
• We use an ice-sheet model inversion to 

calculate basal frictional dissipation.
• STREAMICE: Higher-order ice flow model

• Given observations of:
• Bedrock topography
• Ice thickness
• Ice surface velocity

• Infer:
• Ice viscosity (constrained by englacial

temperature)
• Basal friction

Average misfit = 
-0.63 m yr-1



Results: Subglacial melt rate
• Total melt rate: 6.5 Gt yr-1

• 8% of mass loss from ice-shelf melting 
and iceberg calving. 

• Spatial pattern of melting is dominated by 
basal frictional dissipation – high melt rates 
beneath fast-flowing ice streams (> 0.1 m yr-1).

• Total melt rate is 48% larger than previous 
estimates (Van Liefferinge & Pattyn, 2013).

• We are able to more accurately resolve high 
melt rates beneath ice streams using our 
higher-order ice-flow model.



Uncertainty in melt rate

• Source for total melting is 50:50 split between GHF 
and basal dissipation.
• But contributions vary spatially.

• We use a subglacial routing approximation to assess 
the contribution to meltwater flux along drainage 
pathways. 

a) Drainage pathways connect observed subglacial 
lakes

b) GHF is main meltwater source in slow-flowing 
upstream regions.

c) Different GHF estimates lead to ±7% difference 
in total melt rate.
• In places difference is up to 30%



Subglacial hydrology

• Subglacial routing approximation shows likely 
pathways for drainage, but it is not physically 
realistic.

• To model subglacial hydrology we use the 
GlaDS model:
• Simulates flow through both distributed 

sheet and channelized network.
• Channels are able to grow and shrink 

depending on subglacial flux.

• We perform two sets of simulations varying the 
channel conductivity parameter (high or low).

Routing Approximation

Two component model:
Channelized Flux



Results: Subglacial hydrology

High Channel Conductivity Low Channel Conductivity

Channelized Subglacial Flux

With high channel conductivity, subglacial flux is higher (max 70 vs 40 m3 s-1) and channels are more extensive



Results: Subglacial hydrology

High Channel Conductivity Low Channel Conductivity

Channelized Subglacial Flux

With high channel conductivity, subglacial flux is higher (max 70 vs 40 m3 s-1) and channels are more extensive
Subglacial flux (m

3s
-1)

Subglacial flux (m
3s

-1)



• Compare our result with 
previous subglacial hydrology 
modelling from Le Brocq et al., 
(2013).

• This model does not make the 
distinction between channelized 
and distributed drainage.

• Similar structure, although 
channels don’t extend so far 
inland. Discharge is 
approximately half our result.

• GlaDS also simulates the 
distributed sheet: i.e. flux and 
thickness (1 – 10 mm).

GlaDS: Channelized Flux
Le Brocq et al., (2013)

Subglacial Flux

GlaDS: Sheet Flux GlaDS: Sheet Thickness

Results: Subglacial hydrology



Results: Subglacial hydrology

• Comparing high and low 
channel conductivity.

• The observed locations of 
subglacial lakes coincide 
with simulated areas of 
deep subglacial water and 
low effective pressure.

High Channel Conductivity Low Channel Conductivity



Results: Subglacial hydrology

• Comparing high and low 
channel conductivity.

• The observed locations of 
subglacial lakes coincide 
with simulated areas of 
deep subglacial water and 
low effective pressure.

• For low channel 
conductivity additional 
areas of deep subglacial 
water are present and 
areas of low effective 
pressure exceed subglacial 
lake boundaries.

High Channel Conductivity Low Channel Conductivity



Results: Subglacial hydrology
• Comparing channel location and flux with high and 

low conductivity.

• Channelized discharge for high conductivity coincides 
with ice-shelf basal melting.

• Channelized flux is significantly reduced for low 
conductivity

High Channel Conductivity Low Channel Conductivity



Conclusion
• Total basal melt rate is 6.5 ± 0.5 Gt yr-1, with range due to 

uncertain GHF.
• 50% more than previous estimates – we resolve high basal 

frictional dissipation beneath ice streams.

• Using observations from satellite altimetry, we have been 
able to constrain the subglacial hydrology.

• Coincidence of:
1. Deep subglacial water and low effective pressure 

with the locations observed subglacial lakes
2. Areas of isolated ice-shelf basal melting with 

channelized discharge
Both imply high channel conductivity

• Discharge of meltwater provides 15% of freshwater 
released into the ice-shelf cavity.

• Use of satellite observations to constrain model gives us 
confidence in subglacial hydrology results.


