Coupling modelling and satellite observations to constrain subglacial melt rates and hydrology

EGU General Assembly 2022

Dan Goldberg¹, Martin Wearing¹ Christine Dow², Noel Gourmelen¹, Anna Hogg³

¹School of Geosciences, University of Edinburgh,

²Department of Geography and Environmental Management, University of Waterloo

³School of Earth and Environment, University of Leeds

Introduction

- The rate of mass loss from the Antarctic Ice Sheet is increasing.
- Projections of future mass loss from the Antarctic Ice Sheet are highly uncertain.
- Implications for global mean sea-level rise.
- Threatens coastal communities and infrastructure.
- To reduce uncertainty in projections we need to improve our understanding of complex ice-sheet processes.
- One such process is ice-sheet subglacial hydrology.

Observed mass loss from the Antarctic Ice Sheet (IMBIE)

Projections of future sea-level rise: IPCC AR6 WG1 SPM (2021)

Introduction

- Meltwater forms at the base of the ice sheet due to geothermal heat flux and frictional dissipation.
- Subglacial melting is only a small component of the total ice sheet mass balance (≈3% of surface accumulation) but plays an important role:
 - Lubricates the ice-bed interface allowing faster ice flow.
 - Runoff of freshwater into the ocean, enhances ice-shelf basal melting, influences biological productivity and ocean circulation.
- However, melt rates and hydrology are highly uncertain – there are few observations of the subglacial environment hidden by up to 4 km of ice.

Introduction

- Study area: Amery Ice Shelf Catchment
 - Region of East Antarctica
 - Area of 1.3 x10⁶ km²
 - Third largest ice shelf.
 - Considered to be relatively stable

 Use satellite observations of active subglacial lakes and ice-shelf basal melting to constrain model of subglacial hydrology.

Amery catchment: Ice surface speed

Modelling subglacial melt rates

(next slide)

M= Melt rate, GHF= Geothermal Heat Flux, $au_b=$ basal shear stress, $u_b=$ basal speed, $k_i=$ thermal conductivity, $heta_b=$ basal temperature gradient, $L_i=$ Latent heat of fusion, $ho_i=$ density of ice

Geothermal heat flux

Martos et al., (2017) - magnetic Shen et al., (2020) - seismic

Vertical conduction

Englacial temperature profile:

Van Liefferinge & Pattyn (2013)

Modelling subglacial melt rates: Frictional Dissipation

- We use an ice-sheet model inversion to calculate basal frictional dissipation.
 - STREAMICE: Higher-order ice flow model
- Given observations of:
 - Bedrock topography
 - Ice thickness
 - Ice surface velocity
- Infer:
 - Ice viscosity (constrained by englacial temperature)
 - Basal friction

X (m)

Results: Subglacial melt rate

- Total melt rate: 6.5 Gt yr⁻¹
 - 8% of mass loss from ice-shelf melting and iceberg calving.
- Spatial pattern of melting is dominated by basal frictional dissipation – high melt rates beneath fast-flowing ice streams (> 0.1 m yr⁻¹).
- Total melt rate is 48% larger than previous estimates (Van Liefferinge & Pattyn, 2013).
- We are able to more accurately resolve high melt rates beneath ice streams using our higher-order ice-flow model.

Uncertainty in melt rate

- Source for total melting is 50:50 split between GHF and basal dissipation.
 - But contributions vary spatially.
- We use a subglacial routing approximation to assess the contribution to meltwater flux along drainage pathways.
 - a) Drainage pathways connect observed subglacial lakes
 - b) GHF is main meltwater source in slow-flowing upstream regions.
 - c) Different GHF estimates lead to ±7% difference in total melt rate.
 - In places difference is up to 30%

Subglacial hydrology

- Subglacial routing approximation shows likely pathways for drainage, but it is not physically realistic.
- To model subglacial hydrology we use the GlaDS model:
 - Simulates flow through both distributed sheet and channelized network.
 - Channels are able to grow and shrink depending on subglacial flux.
- We perform two sets of simulations varying the channel conductivity parameter (high or low).

Channelized Subglacial Flux

With high channel conductivity, subglacial flux is higher (max 70 vs 40 m³ s⁻¹) and channels are more extensive

Channelized Subglacial Flux

With high channel conductivity, subglacial flux is higher (max 70 vs 40 m³ s⁻¹) and channels are more extensive

- Compare our result with previous subglacial hydrology modelling from Le Brocq et al., (2013).
- This model does not make the distinction between channelized and distributed drainage.
- Similar structure, although channels don't extend so far inland. Discharge is approximately half our result.
- GlaDS also simulates the distributed sheet: i.e. flux and thickness (1 – 10 mm).

- Comparing high and low channel conductivity.
- The observed locations of subglacial lakes coincide with simulated areas of deep subglacial water and low effective pressure.

High Channel Conductivity

Low Channel Conductivity

- Comparing high and low channel conductivity.
- The observed locations of subglacial lakes coincide with simulated areas of deep subglacial water and low effective pressure.
- For low channel conductivity additional areas of deep subglacial water are present and areas of low effective pressure exceed subglacial lake boundaries.

High Channel Conductivity

1.55

1.6

1.65

X (m)

1.7

1.75

 $\times 10^6$

Low Channel Conductivity

- Comparing channel location and flux with high and low conductivity.
- Channelized discharge for high conductivity coincides with ice-shelf basal melting.
- Channelized flux is significantly reduced for low conductivity

Conclusion

- Total basal melt rate is 6.5 ± 0.5 Gt yr⁻¹, with range due to uncertain GHF.
- 50% more than previous estimates we resolve high basal frictional dissipation beneath ice streams.
- Using observations from satellite altimetry, we have been able to constrain the subglacial hydrology.
- Coincidence of:
 - Deep subglacial water and low effective pressure with the locations observed subglacial lakes
 - Areas of isolated ice-shelf basal melting with channelized discharge

Both imply high channel conductivity

- Discharge of meltwater provides 15% of freshwater released into the ice-shelf cavity.
- Use of satellite observations to constrain model gives us confidence in subglacial hydrology results.

