Climate change and extreme event influence on wind and solar power generation

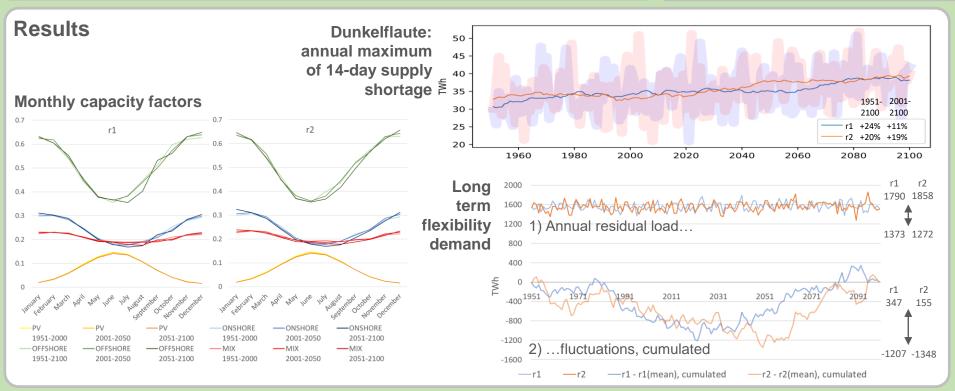
What renewable supply shortages in Europe can be expected in the course of the 21st century? Will the intensity of Dunkelflaute events be influenced by climate change?

Yvonne Scholz*, Ronald Stegen*, Wenxuan Hu*, EGU2022, 25.05.2022

*German Aerospace Center (DLR) Institute of Networked Energy Systems yvonne.scholz@dlr.de

Data

EURO-CORDEX climate projections¹


- Coupled Model Intercomparison Project (CMIP) 5
- Representative Concentration Pathway: RCP 8.5
- Global Climate Model: MPI-ESM-LR
- Regional Climate Model: REMO2009
 - "Minimal ensemble": realisations r1 and r2

European supply scenario based on TYNDP *Distributed Energy*²

- Interpolated year 2035
- Capacity: 648 GW PV 687 GW Wind onshore 206 GW Wind offshore
- Power demand: 4365 TWh/a

Methods

- Power generation time series with EnDAT³ (Energy Data Analysis Tool)
- Monthly capacity factors (cf) for three time periods: 1951-2000, 2001-2050, 2051-2100
- Dunkelflaute: 14-day power generation compared to long term mean power generation
- Flexibility demand: 1) Residual load (RL) = Load Wind onshore Wind offshore PV
 - 2) Fluctuation = RL RL(mean) = annual flexibility demand
 - 3) Cumulation → inter-annual flexibility demand

Conclusions

- Change of the max. monthly mix cf in the 21st century: -6% to +4%
- Dunkelflaute intensity increase in the 21st century: 11-19%
- Flexibility demand in the TYNDP Distributed Energy scenario (2035)
 - Annual residual load fluctuations:
 27-38% of mean value
 = 10-13% of annual power demand
 - Max. inter-annual flexibility demand:
 ~35% of annual power demand

Lessons learned

- Always use an ensemble of climate projections⁴
 - How many elements at least?
- High data storage requirements: up to 700 GB per parameter

¹ Subset of climate projection data as described in Jacob, D. et al., EURO-CORDEX: new high-resolution climate change projections for European impact research, Regional Environmental Change, 2014, 14, 563-578

² TYNDP (Ten Year Network Development Plan) 2022 Scenarios, ENTSO-E, 2022, https://2022.entsos-tyndp-scenarios.eu/download/

³ Scholz, Y: Renewable energy based electricity supply at low costs: development of the REMix model and application for Europe, Dissertation, University of Stuttgart, 2012, http://dx.doi.org/10.18419/opus-2015

⁴EURO-CORDEX: Guidance for EURO-CORDEX climate projections data use 2021, https://www.euro-cordex.net/imperia/md/content/csc/cordex/guidance for euro-cordex climate projections data use 2021-02 1 .pdf