

#### Introduction

- · Transform faults (TF) or non-transform offsets (NTO) separate mid-ocean ridges (MOR)
- · Segment offsets can evolve from TFs to NTOs or the other way around (e.g. Hey et al., 2015)
- Fraction of spreading accommodated magmatically (M) influences fault spacing, axial topography
   and ridge morphology
   fault scarps = abyssal hill faults

(e.g. Buck et al. 2005, Ito & Behn 2008,

Howell et al. 2016)

What controls the formation of transform faults (TF) versus non-transform offsets (NTO)?





#### Model setup



50

40

30

20

- · 3D finite difference code LaMEM: solves for momentum, mass and heat conservation
- visco-elasto-plastic model allows spontaneous fault formation and evolution

-20

-30

-40

-50

· "dike zone": imposed divergence to simulate magmatic accretion along one ridge segment

#### Numerical results and natural observations

Transform Fault (TF)





## Non Transform Offset (NTO)



#### Velocity field to define regime (backup)

## Transform Fault (TF)

< 8°

# Intra Transform Spreading Center (ITSC)



## Non Transform Offset (NTO)

>8°











#### Summary Part I

- Models can reproduce a variety of offset-types between ridges
- Depending on offset D and underlap distance L,
   3 different regimes can be identified:
- NTO small-medium offset, all distances of underlap

TF medium-large offset small underlap ITSC large offset, large underlap







#### Part II: Development of abyssal hills

Observation: faulting preferably on the inside where transform fault is located

Investigate the importance of relative weakness of TF and FZ for fault development

#### 20km offset, 2L = 14km



#### Part II: Development of abyssal hills

Observation: faulting preferably on the inside where transform fault is located

Investigate the importance of relative weakness of TF and FZ for fault development



Isolate behavior of faulting: constant M=0.75

Impose lower initial friction angle and low cohesion in transform fault (TF) and/or fracture zone (FZ)

30km offset, 2L = 0km



#### Results with different imposed weakening

No initial imposed weakening

Only imposed on Fracture zone:

initial friction angle: 10° initial cohesion: 10 Pa

Imposed on FZ and TF:

initial friction angle: 10° initial cohesion: 10 Pa







#### Results with different imposed weakening

No initial imposed weakening





Imposed on FZ and TF:

initial friction angle: 10° initial cohesion: 10 Pa



### Take home messages & Outlook

- NTOs, TFs and ITSC develop depending on the size of offset between ridges and the distance over which magmatic extension decreases
- a relatively weak fracture zone is necessary to promote faulting on the inside and outside of MORs (in our models) and lead to a more natural-looking TF

- Next steps: define a clear boundary between TF and NTO (new?)
  - relate relative weakness of FZ vs TF to fault spacing and occurrence in nature