

The Cascading Foreshock Sequence of the Ms 6.4 Yangbi Earthquake in Yunnan, China

Gaohua Zhu¹, Hongfeng Yang¹, Yen Joe Tan¹, Mingpei Jin², Xiaobin Li², and Wei Yang³

- 1 Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- 2 Yunnan Earthquake Agency, Kunming 650224, China
- 3 Key Laboratory of Seismic Observation and Geophysical Imaging, Institute of Geophysics, China Earthquake Administration, Beijing 100081, China

Session NH4.1, EGU22-8924 May 27, 2022

Earthquake initiation models

- (a) foreshocks are are triggered by **aseismic slip** over an extended area surrounding the mainshock hypocentre (nucleation zone);
- (b) foreshocks are triggered by neighbour-to-neighbour stress transfer and trigger a large earthquake by random chance;
- (c) Contains attributes of both endmembers.

[McLaskey, 2019]

As no direct observations of preslip were available, the processes were usually inferred from seismicity and thus debates exist, mostly due to the insufficient resolution.

Life-saving 2021 Ms 6.4 Yangbi foreshocks **EGU** Assembly 2022

Seismicity started to increase significantly 3 days before the mainshock, with 5 events of magnitudes larger than 4.

Local residents have stayed in tents or outside vulnerable buildings on May 20th

Well-recorded 2021 Ms6.4 Yangbi sequence (EGU General Sembly 2022)

- An Ms 6.4 earthquake struck Yangbi, western Yunnan, China, on May 21, 2021.
- Seismic stations + GPS observations extremely close to the mainshock.

Spatiotemporal pattern of foreshocks (EGU Assembly 2022)

A total of 796 events with the magnitude of -0.1-5.3 were well relocated. Based on their spatial pattern, we divided the mainshock ruptured fault into zone 1, 2, 3

Cluster 1

- ☐ Confined within a 3-km segment along strike
- ☐ Spanned in depth of 3-7 km
- Located within 1 km normal to fault

Cluster 2

- ☐ Ruptured the segment of 5 km, towards the mainshock hypocenter
- ☐ Spanned in depth of 3-6 km
- Located within ~1 km normal to fault

Cluster 3

- □ Ruptured southeastward (zone 3), away from the mainshock hypocenter
- ☐ After the largest foreshock Mw 5.2, off fault seismicity on secondary faults or branches.

Foreshocks spatial temporal evolution

Intermittent episodes of foreshocks without an accelerating pattern leading up to the mainshock.

Favored model

a Mainshock pre-slip

c Ambient SSE or fluid flow

d Migration pattern

- lack of consistent foreshock migration and repeating earthquakes;
- intermittent episodes of foreshocks without an accelerating pattern leading up to the mainshock.

On/Off-fault foreshocks

M>2.8 foreshock: focal mechanisms, rupture directivities

The black ones -> fault 1, the main rupture fault

The blue ones -> fault 2

The red ones -> fault 3, including the largest Mw5.2 foreshocks (f14)

On-fault shear stress changes

- ruptured patches were adjacent to or only partially overlapped with each other
- mainshock nucleated at a location where previous foreshocks increased the shear stress by 0.26 Mpa (2.6 bar).
- It demonstrates a clear cascading failure process.

Increased CFS caused by the largest foreshock

The largest foreshock also increased the Coulomb stress at the mainshock focal location by 0.5 bar.

$$\Delta CFS = \Delta \tau + \mu \Delta \sigma$$

[Zhu, et al., 2022]

Summary

- ☐ Spatial and temporal evolution pattern of the foreshocks suggest a cascading mechanism
 - (1) the lack of consistent foreshock migration and repeating earthquakes;
 - (2) intermittent episodes of foreshocks without an accelerating pattern leading up to the mainshock;
 - (3) most of the large foreshocks abutted without overlap or with minor overlap and cumulatively increased the stress at the mainshock hypocenter.
- ☐ These foreshocks play critical roles in hazard mitigation

Thanks