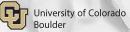
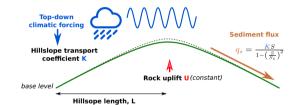
Hillslope response to oscillating forcing


Vincent Godard^{1,2} and Greg E. Tucker^{3,4}

¹CEREGE, Aix-Marseille University, Aix-en-Provence, France,

²Institut Universitaire de France, Paris, France,

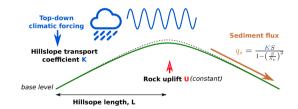
³CIRES, University of Colorado, Boulder, CO, USA,


⁴Department of Geological Sciences, University of Colorado, Boulder, CO, USA

- ▶ Hillslopes are key components of landscapes response to climate variations
- ▶ Hillslopes occupy most of the continents surface and produce most of the sediments
- ► Are they just following passively the pace imposed by rivers?

- ▶ Hillslopes are key components of landscapes response to climate variations
- ▶ Hillslopes occupy most of the continents surface and produce most of the sediments
- Are they just following passively the pace imposed by rivers?

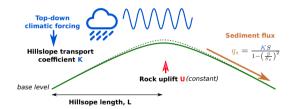
Approach


- ▶ 1D hillslope models
- ▶ Transport-limited
- ► Non-linear sediment flux
- Oscillations of transport coefficient K

- ▶ Hillslopes are key components of landscapes response to climate variations
- ▶ Hillslopes occupy most of the continents surface and produce most of the sediments
- Are they just following passively the pace imposed by rivers?

Approach

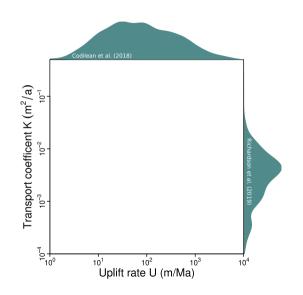
- ▶ 1D hillslope models
- Transport-limited
- ► Non-linear sediment flux
- Oscillations of transport coefficient K

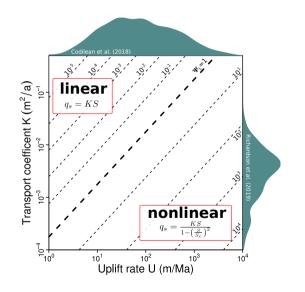

Take home message

- ▶ Linear/nonlinear transition induces complex hillslope dynamics
- Impact on filtering potential with respect to climatic signals
- Climatic frequency shift at the Mid-Pleistocene Transition influence erosion response

- ▶ Hillslopes are key components of landscapes response to climate variations
- ▶ Hillslopes occupy most of the continents surface and produce most of the sediments
- Are they just following passively the pace imposed by rivers?

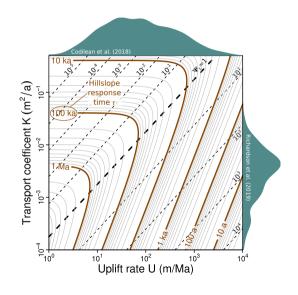
Approach


- ▶ 1D hillslope models
- Transport-limited
- ► Non-linear sediment flux
- Oscillations of transport coefficient K


Take home message

- ▶ Linear/nonlinear transition induces complex hillslope dynamics
- Impact on filtering potential with respect to climatic signals
- Climatic frequency shift at the Mid-Pleistocene Transition influence erosion response

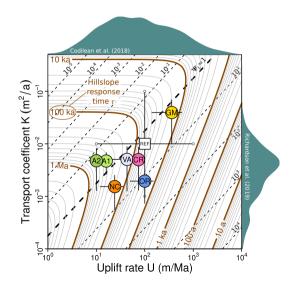
Godard, V., Tucker, G.E., **2021**. Influence of Climate-Forcing Frequency on Hillslope Response. *Geophysical Research Letters* 48



- Hillslope response dependency on :
 - transport coefficient K
 - ightharpoonup uplift rate U

- ► Hillslope response dependency on :
 - transport coefficient K
 - uplift rate U
- ► Linear / non-linear flux ratio

$$\Psi = \frac{q_{nl}}{q_l} = \frac{1}{2}\sqrt{1 + E^{*2}} - \frac{1}{2}$$

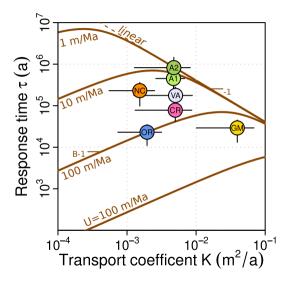


- ► Hillslope response dependency on :
 - transport coefficient K
 - ▶ uplift rate *U*
- ► Linear / non-linear flux ratio

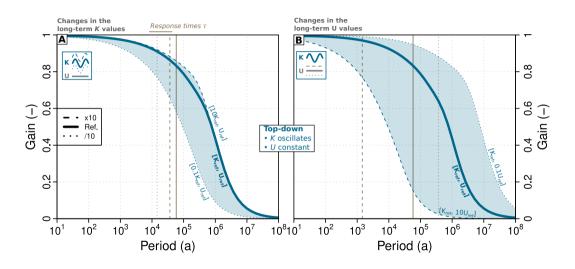
$$\Psi = rac{q_{nl}}{q_l} = rac{1}{2}\sqrt{1 + E^{*2}} - rac{1}{2}$$

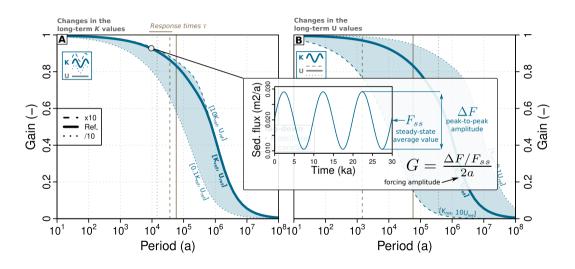
Hillslope response time

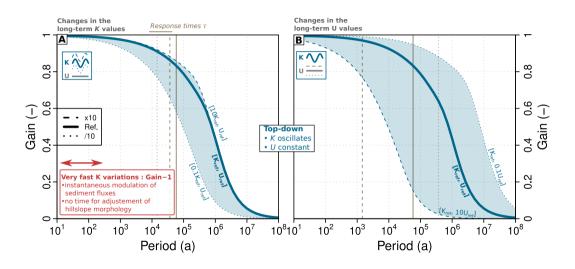
$$\tau = \frac{AL^2}{K(1+\Psi)^B}$$

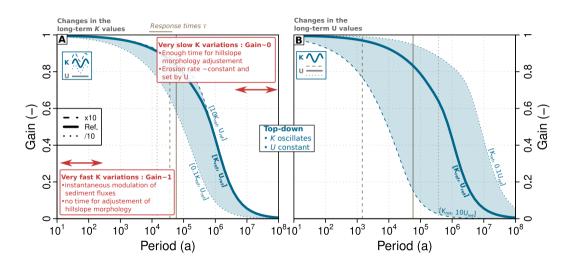

- ► Hillslope response dependency on :
 - transport coefficient K
 - uplift rate U
- ► Linear / non-linear flux ratio

$$\Psi = \frac{q_{nl}}{q_l} = \frac{1}{2}\sqrt{1 + E^{*2}} - \frac{1}{2}$$

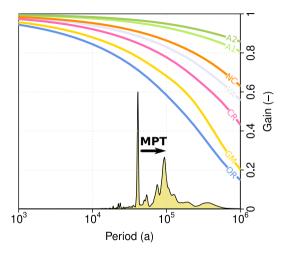

Hillslope response time

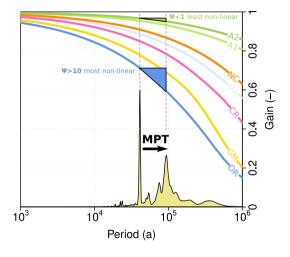

$$\tau = \frac{AL^2}{K(1+\Psi)^B}$$


- Well constrained settings
 - ► GM Gabilan Mesa, CA (Roering et al., 2007)
 - A SE Australian Escarpment (Godard et al., 2019)
 - CR Sierra Nevada, CA (Hurst et al., 2012)
 - NC Coweeta, NC (Grieve et al., 2006)
 - OR Oregon Coast Range (Reoring et al., 2007)
 - VA Provence, France (Godard et al., 2020)

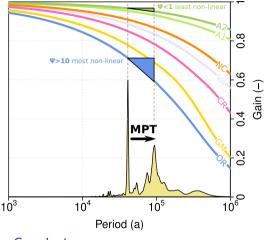


- Non-linear response time depends on both *U* and *K*
- Transition from linear to non-linear regime
- Most settings are close to the transition point
- Change in dependency on K related to the steepening of nonlinear hillslope at low K values





Impact of Mid-Pleistocene Transition


- ► Changing *K* oscillations from 40 ka to 100 ka periods
- Overall decrease in response gain

Impact of Mid-Pleistocene Transition

- ► Changing *K* oscillations from 40 ka to 100 ka periods
- Overall decrease in response gain
- ► SE Australian Escarpment (A)
 - $ightharpoonup \Psi < 1$
 - ightharpoonup High au (several 100 ka)
 - Limited change in response gain
- Oregon Coast Range (OR)
 - \blacktriangleright $\Psi > 10$
 - low τ (\sim 10 ka)
 - ▶ Nearly 0.15 change in response gain

Impact of Mid-Pleistocene Transition

- ► Changing *K* oscillations from 40 ka to 100 ka periods
- Overall decrease in response gain
- ► SE Australian Escarpment (A)
 - \blacktriangleright $\Psi < 1$
 - ightharpoonup High au (several 100 ka)
 - ► Limited change in response gain
- Oregon Coast Range (OR)
 - ▶ $\Psi > 10$
 - low τ (\sim 10 ka)
 - ▶ Nearly 0.15 change in response gain

Conclusion

A pure frequency change in the climatic forcing can impact hillslope dynamics in high relief / fast erosion landscapes