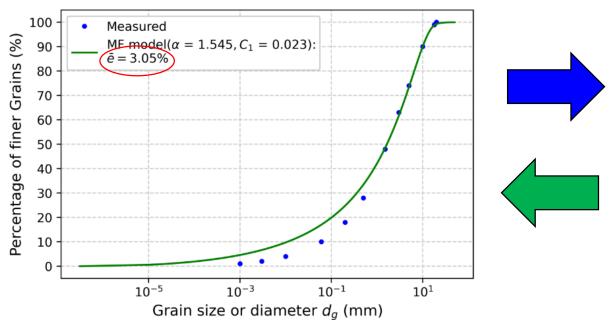
Modelling Pore Size Distribution, Water Retention & Hydraulic Conductivity of Granular substrates using a Universal Multifractal-based approach for Nature Based Solutions

Arun Ramanathan¹, Pierre-Antoine Versini¹, Daniel Schertzer¹, Ioulia Tchiguirinskaia¹,

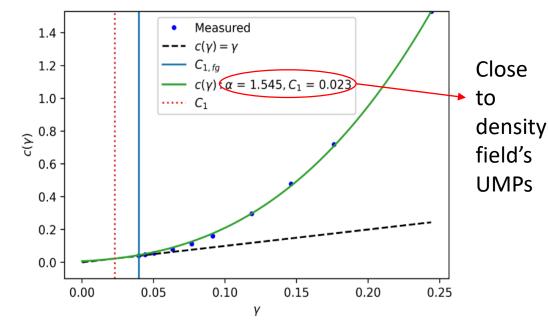
Remi Perrin² & Lionel Sindt²

¹ École des Ponts Paristech (ENPC), Laboratory of Hydrology Meteorology & Complexity (HM&Co)

² SOPREMA



Research gap addressed


- Grain Size Distribution (GSD) in porous media (used in Nature Based Solutions NBS) → highly heterogeneous
- Few recent studies (Stanic et al., 2021) use Universal Multifractal Framework (UMF) for GSD
- GSD and Pore Size Distribution (PSD) are similar
- But still PSD is modeled in simplistic manner (Fractal-based model)
- Further ramifications for Water Retention (WR) and Hydraulic conductivity (HC)
- Even when GSD model is more accurate → finally simulated hydrological properties are not!
- New UM-based approach to model PSD, WR & HC is proposed
- And tested on 4 different Green Roof Substrates

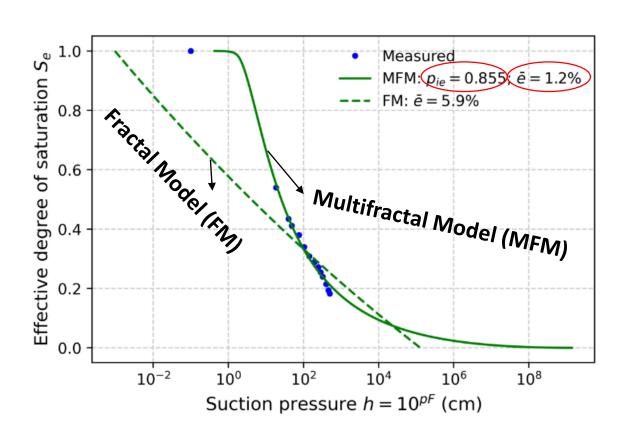
UM parameter estimation from measured GSD

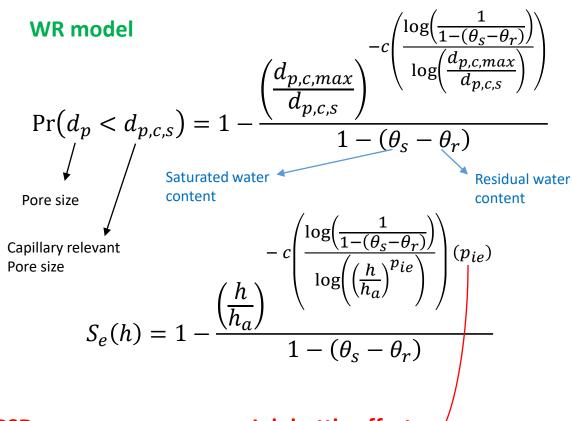
Classical Sieving on Green Wave Substrate (GWS) sample size $L \rightarrow$ Measurements

UMP estimation (avoiding multifractal phase transitions)

$$C_1 = \gamma_{min}$$

Grain Size Distribution (GSD) model


Pr
$$(d_g < d_{g,s}) = 1 - \frac{\left(\frac{L}{d_{g,s}}\right)^{-\log\left(\frac{L}{d_{g,s}}\right)}}{1 - \phi};$$
 Grain diameter/size porosity

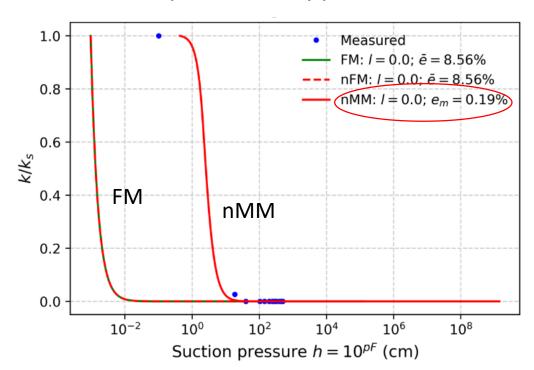

Codimension of singularities

$$c(\gamma) = \begin{cases} C_1 \left(\frac{\gamma(\alpha - 1)}{C_1 \alpha} + \frac{1}{\alpha} \right)^{\frac{\alpha}{\alpha - 1}}; \alpha \neq 1 \\ C_1 e^{\left(\frac{\gamma}{C_1} - 1\right)}; \alpha = 1 \end{cases}$$

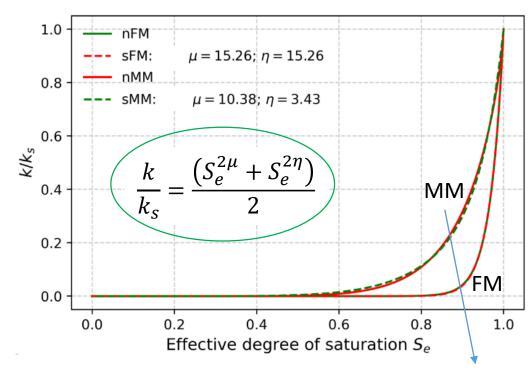
Pore Size Distribution (PSD) & Water Retention (WR)

Grain Size Distribution → Pore Size Distribution → Capillary pores → Water Retention

Better water retention (at smaller suctions)


Steepness of GSD/PSD curve (smaller range of sizes)

___ Ink-bottle effect (smaller p_{ie})

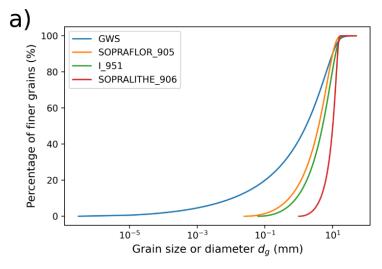

Hydraulic Conductivity

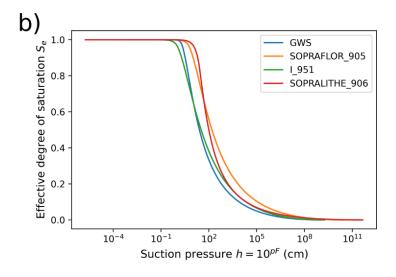
numerical Fractal Model (nFM) numerical Multifractal Model (nMM) scaling law from Fractal Model (sFM) scaling law from Multifractal Model (sMM)

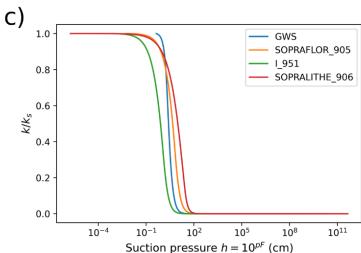
$l \rightarrow$ pore tortuosity parameter

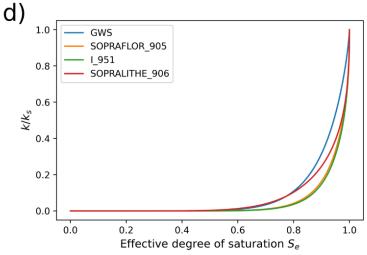
More complex shape → one scaling exponent insufficient!

Mualem Model (numerical integration)
$$k(u) = k_s S_e^l \left(\frac{\sum_{j=1}^u \left(\frac{h(j)^{-1} + h(j+1)^{-1}}{2} \right) |S_e(j) - S_e(j+1)|}{\sum_{j=1}^{N-1} \left(\frac{h(j)^{-1} + h(j+1)^{-1}}{2} \right) |S_e(j) - S_e(j+1)|} \right)^2 \quad \forall \ 1 \le u \le N-1$$


Higher conductivity at higher water contents


$$\forall \ 1 \leq u \leq N-1$$


4 Different substrates


Conclusions

$$\alpha > \alpha > \alpha > \alpha$$
; $C_1 < C_1 < C_1 < C_1 \Rightarrow p_{ie} > p_{ie} > p_{ie} > p_{ie}$

- Density field UMPs → GSD field UMPs
- UMP estimation from GSD (avoiding multifractal phase transitions)
- PSD similar to GSD
- New UM-based approach to model PSD, WR &
 HC
- New parameter $p_{ie} \rightarrow$ Ink-bottle effect
- Total hydrological behavior → UMPs
- Improvement from earlier fractal-based approximations
- No explicit consideration \rightarrow internal pores (complex grain shapes) & stratification $\rightarrow p_{ie}$ considers these implicitly
- p_{ie} dependent on steepness of GSD \rightarrow but still curve fit estimate \rightarrow explicit function of α , $C_1 \rightarrow$ future scope...