Spatial distributions of height-integrated conductance & FACs during substorms

J. A. Carter, S. E. Milan, M. E. Lester: University of Leicester

Colin Forsyth: Mullard Space Science Laboratory, UCL

M.-T. Walach: Lancaster University

B. Anderson, L. J. Paxton: Applied Physics Laboratory, John Hopkins University

May 2022

EGU ST 3.4 Open Session on the Ionosphere

DMSP/SSUSI + AMPERE: energy, flux & FACs

Credit: ICC

The data sets: auroral emissions, FACs, substorms

DMSP/SSUSI list AMPERE list

Bins from magnetic latitudes: 50° - 63°, 63° - 65°, 65° - 67°, 67° - 69°, 69° - 71°, 71° - 90°

SOPHIE substorm list Forsyth+ 2015

Modal $\delta t = 0.15$ hr or 9 min Variable grid: $-2\delta t$ to $+4\delta t$, $0.25\delta t$ steps

SSUSI parameters: 21 hr to 4 hr MLT, 10° to 35° co-latitude

0.00 δ t, $\Sigma_{\rm P}$

- M.Lat. =
$$50^{\circ}$$
 - 63° - M.Lat. = 69° - 71°

- M.Lat. =
$$63^{\circ}$$
 - 65° - M.Lat. = 71° - 73°

- M.Lat. =
$$65^{\circ}$$
 - 67° - M.Lat. = 73° - 75°

- M.Lat. =
$$67^{\circ}$$
 - 69° - M.Lat. = 75° - 90°

Mean energy, E₀

Mean energy flux, Q

Broadly ordered by magnetic latitude

Mag. lats largest values, largest change: 63° - 65°

Peak ~< 1.25 δt after onset

Lower latitude onsets - longer duration

- M.Lat. =
$$50^{\circ}$$
 - 63° - M.Lat. = 69° - 71°

- M.Lat. =
$$63^{\circ}$$
 - 65° - M.Lat. = 71° - 73°

- M.Lat. =
$$65^{\circ}$$
 - 67° - M.Lat. = 73° - 75°

- M.Lat. =
$$67^{\circ}$$
 - 69° - M.Lat. = 75° - 90°

Increase in flux Q driving change in ratio

- M.Lat. =
$$50^{\circ}$$
 - 63° - M.Lat. = 69° - 71°

- M.Lat. =
$$63^{\circ}$$
 - 65° - M.Lat. = 71° - 73°

- M.Lat. =
$$65^{\circ}$$
 - 67° - M.Lat. = 73° - 75°

- M.Lat. =
$$67^{\circ}$$
 - 69° - M.Lat. = 75° - 90°

FACs: 4 hr to 5 hr MLT

0.00 δ t, $\Sigma_{\rm P}$

- M.Lat. =
$$50^{\circ}$$
 - 63° - M.Lat. = 69° - 71°

- M.Lat. =
$$63^{\circ}$$
 - 65° - M.Lat. = 71° - 73°

- M.Lat. =
$$65^{\circ}$$
 - 67° - M.Lat. = 73° - 75°

- M.Lat. =
$$67^{\circ}$$
 - 69° - M.Lat. = 75° - 90°

FACs - down (R1)

Mean up FACs (R2) ~ordered by magnetic latitude, highest bin exception

Mean down FACs (R1) ordered by magnetic latitude

Lowest onset substorms give highest FAC j, behaviour over substorm clearer

Peak ~< 1.25 δt after onset cf. SSUSI results

Similar recovery time for majority of onset latitudes

Summary & Conclusions

- Height-integrated conductances & FACs by substorm phase & magnetic latitude of onset
- Time grid based on expansion phase
- Carter+ 2020: https://doi.org/10.1029/2020JA028121
- Carter+ 2022 in prep
- Statistical maps may be useful for primers for global M-I-T models: testing
 - Disadvantage: not height resolved
 - Benefits: large spatial regions ~simultaneously
- Energies, fluxes, conductances, and FACs
 - ~ordered by magnetic latitude, lowest = largest values
- Largest energies, fluxes, conductances and FACs for magnetic latitudes 63°-65°
 - Optimal onset latitude
 - Brightest longest duration aurora -> largest conductances -> consistent with literature